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We compare two calculations of the particle density in the superfluid phase of the O(2) model with a chemical
potential μ in 1+1 dimensions. The first relies on exact blocking formulas from the Tensor Renormalization
Group (TRG) formulation of the transfer matrix. The second is a worm algorithm. We show that the particle
number distributions obtained with the two methods agree well. We use the TRG method to calculate the thermal
entropy and the entanglement entropy. We describe the particle density, the two entropies and the topology of the
world lines as we increase μ to go across the superfluid phase between the first two Mott insulating phases. For
a sufficiently large temporal size, this process reveals an interesting fine structure: the average particle number
and the winding number of most of the world lines in the Euclidean time direction increase by one unit at a
time. At each step, the thermal entropy develops a peak and the entanglement entropy increases until we reach
half-filling and then decreases in a way that approximately mirrors the ascent. This suggests an approximate
fermionic picture.
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I. INTRODUCTION

The O(2) model, also called the classical XY model, in
one space and one Euclidean time (1+1) dimensions plays an
important role in the field theoretical approach of condensed
matter phenomena and is prominently featured in standard
textbooks [1–4]. This model provides the simplest example of
a Berezinski-Kosterlitz-Thouless transition [5,6], and it may
be used as an effective theory for the Bose-Hubbard model
[7]. More generally, its associated quantum Hamiltonian of
Abelian rotors appears in many different contexts such as the
formulation of Abelian lattice gauge theories [8], Josephson
junctions arrays [9], and cold atom simulators [10,11].

When a chemical potential μ is introduced, the model
displays a rich phase diagram depicted in Ref. [10]. For
sufficiently small β, the inverse temperature of the classical
model, if we increase μ, we go from a Mott insulating (MI)
phase where the average particle number ρ remains zero until
it reaches a superfluid (SF) phase where ρ starts increasing
with μ. This proceeds until ρ reaches one per site and we
enter in a new MI phase where it stabilizes at this value. For
β small enough, this alternation of MI and SF phases repeats
several times. In suitable coordinates [10], the phase diagram
is similar to what is found for the one-dimensional quantum
Bose-Hubbard model [12,13].

A simple way to locate approximately the SF phase
consists in calculating the thermal entropy, defined precisely
in Eq. (16), on a lattice with a large enough temporal size. An
example is shown in Fig. 1. The central line at β = 0.1, where
we do calculations hereafter, covers the first SF phase and the
MI phases with ρ = 0 and 1. As we increase μ the thermal
entropy goes through a sequence of peaks culminating around
ln 2, signaling level crossings that will be explained below.
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The number of peaks equals the number of sites in the spatial
direction. This is clearly a finite size feature, while the notion
of phase used above should be understood in the limit of an
infinite number of sites.

In this article, we describe microscopically the rich se-
quence of changes which occurs as we move across the SF
phase along a line of constant β as described above and
illustrated in Fig. 1. The figure can be embedded in the phase
diagrams of Ref. [10]: the lower and upper light lines ending
at the tips of the the two MI phases. The fine structure that
we report here is first studied for a small spatial size of
four sites and then for larger sizes. At infinite spatial size,
there are three phases in Fig. 1, the SF phase approximately
covering the four light bands with larger values of the thermal
entropy and the three darker regions in between. We also
report about the numerical methods that we developed in this
process.

The specific O(2) model used in this article is a planar
version of the Ising model with a O(2) symmetry, on a Lx × Lt

lattice. The notations used later to characterize the model and
the basic numerical methods are provided in Sec. II. Most
of the calculations done in this article will rely on the tensor
renormalization group (TRG) method [14] which can be used
to write exact blocking formulas for the model considered
[15–17]. In Sec. II B, we remind how the method can be applied
to the calculation of the transfer matrix [10].

It should be noticed that the presence of μ causes the
action to be complex. This sign problem prevents the use
of Monte Carlo simulations when μ is too large to rely on
reweighing methods. However, using a Fourier expansion of
the Boltzmann weights [18], it is possible to find a formulation
of the partition function in terms of world lines with a positive
weight as long as μ is real. This positivity allows statistical
sampling [19] using a classical version of the worm algorithm
[20]. The computational methods used for the worm algorithm
are briefly reviewed in Sec. II C.

2470-0045/2016/93(1)/012138(11) 012138-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.012138


YANG, LIU, ZOU, XIE, AND MEURICE PHYSICAL REVIEW E 93, 012138 (2016)

=

=

0.11

0.22

0.33

0.44

0.55

FIG. 1. Intensity plot for the thermal entropy of the O(2) model
on a 4 × 128 lattice in the β-μ plane. The dark (blue) regions are
close to zero and the light (yellow ochre) regions peak near ln 2. The
MI phase with ρ = 0 is below the lowest light band, the MI phase
with ρ = 1 is above the highest light band and there is a single SF
phase in between the two MI phases.

The TRG method can be used for arbitrary complex
values [21] of β and μ. The only sources of error are the
truncations of the infinite sum to finite ones as required for
the numerical treatment. These truncations take place in the
original formulation of the partition function and also at
each step of the coarse-graining process. A first check of
the agreement between the TRG and the worm methods is
provided in Sec. III where we compare particle number density
histograms and show that they agree well.

In the SF phase, the model is gapless in the the limit Lx →
∞. At finite Lx and small β, the gap is expected to scale like
1/L2

x . This follows from a nonrelativistic dispersion relation
and can be justified using degenerate perturbation theory. An
invaluable method to study the long-range correlations in near
gapless situations is to calculate the entanglement entropy.
Interestingly, it seems possible to measure the entanglement
entropy in many-body systems implemented in cold atoms
[22–28]. This includes studies of rather small Lx systems.
The entanglement entropy needs to be distinguished from the
thermal entropy [25]. For this reason, in Sec. IV we discuss
these two entropies using the transfer matrix formalism.

We use a lattice version of the setup of Calabrese and Cardy
[29,30] for 1+1 dimensional nonlinear sigma models. We con-
sider the case of finite, but often large, Lt . A finite Lt introduces
a temperature proportional to 1/Lt , distinct from 1/β used in
the classical formulation, and therefore we have a thermal
density matrix. In this context, the relation between the two
entropies is a rather open topic of investigation [31]. Numerical
calculations of the related Renyi entropy of the classical XY
model, without chemical potential, were presented in Ref. [32].

In the theoretical framework developed in Refs. [29,30], it
is common to move back and forth between the classical and
quantum formulation using the transfer matrix. An interesting
example is given in Ref. [33] for the O(N ) model. In our
article, the discussion is focused on the classical formulation. A
quantum Hamiltonian corresponding to the model considered

here is provided in Eq. (30) of Ref. [11]. Reasonable approx-
imations are obtained for a spin-1 truncation (three states per
sites). In general, the spin-1 quantum XY model with an extra
(Sz)2 term in the Hamiltonian is closely related to the model
studied here. In addition, the relationship between these quan-
tum models and a family of Bose-Hubbard models with large
on-site repulsion, possibly implementable on optical lattices,
is discussed in Refs. [10,11]. The approximate description in
terms of hard-core bosons suggests an underlying fermionic
description of our findings. Furthermore, for μ corresponding
to the superfluid region, the state |Sz = −1〉 plays a negligible
role and an approximate connection with the spin-1/2 quantum
XY model with a magnetic field emerges. This can be
explained by the fact that Sz and (Sz)2 have the same effect on
the remaining subspace of with eigenvalues 0 and 1.

With the TRG method, we approximate the reduced
density matrix by a finite dimensional matrix which can be
diagonalized numerically and we do not need to use the replica
trick as in Refs. [29,30,32]. We then show how to use the TRG
method to express the entanglement entropy for a bipartition
of the system. We show that for small Lt , the thermal entropy
is larger than the entanglement entropy but the entanglement
entropy becomes larger as Lt is increased.

In Sec. V, we use degenerate perturbation theory to get an
approximate idea of the large structure (location of SF phases)
and fine structure (changes of ρ and entanglement entropy
across one SF phase) of the phase diagram. We relate in some
approximate way, the eigenvectors of the transfer matrix with
particle number n to world-line configurations with a winding
number which is also n. We then calculate numerically the
average particle number density, the thermal entropy and the
entanglement entropy for values of μ spanning the first SF
phase as explained above.

For sufficiently large Lt , the results show an interesting
fine structure: the particle number and the winding number
of (most of) the world lines increase by one unit at a time
as we keep increasing μ. At each step, the thermal entropy
develops a peak and the entanglement entropy increases with
μ until ρ reaches half-filling. As we keep increasing μ

beyond this value, the entanglement entropy decreases in a
way that approximately mirrors its ascent. This approximate
symmetry can be justified by noticing that if we interchange
the occupied links with the unoccupied links in the world
lines, we transform a configuration with particle number n

to one with a particle number Lx − n. This approximate
particle-hole transformation can be reformulated in the context
of degenerate perturbation theory and is similar to an exact
symmetry of the spin-1/2 quantum XY model in an external
magnetic field briefly explained in the conclusions.

Our results are summarized in Sec. VI where we also
briefly discuss work in progress. We suggest ways to reduce
the small truncation errors reported in Sec. III and to interpret
the approximate particle-hole symmetry found in Sec. V.
We also briefly discuss the relationship of our work with
Polyakov’s loop studies [34,35] and with recently proposed
cold atom experiments [36].

II. NOTATIONS AND NUMERICAL METHODS

In this section, we introduce the O(2) model with a chemical
potential. We describe the two numerical methods used in this
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article. The first is the TRG which relies on coarse-graining,
the second is a worm algorithm which relies on sampling. This
section contains important concepts used in the next sections,
such as the representation of the partition function in terms
of integers labeling Fourier modes attached to the links, also
called bonds, of the lattice, their use in the transfer matrix
formulation and their graphical illustration as world lines.
The section also contains technical details about the numerical
implementations that are given for completeness.

A. The model

We consider the O(2) model, sometimes called the classical
XY model, with one space and one Euclidean time direction,
and a chemical potential μ. One can interpret μ as the
imaginary part of a constant gauge field in the temporal
direction. The sites of the rectangular lattice are labeled (x,t)
and the unit vectors denoted x̂ and t̂ . The line segments joining
two nearest neighbor sites are called links. The total number of
sites is Lx × Lt . In the following, we are typically interested
in the case Lt � Lx . We assume periodic boundary conditions
in space and time. The partition function reads

Z =
∫ ∏

(x,t)

dθ(x,t)

2π
e−S (1)

with

S = − βt̂

∑
(x,t)

cos(θ(x,t+1) − θ(x,t) − iμ)

− βx̂

∑
(x,t)

cos(θ(x+1,t) − θ(x,t)). (2)

In all the numerical calculations done in this article, we con-
sider space-time isotropic couplings βx̂ = βt̂ = β. However, if
we set βx̂ to zero, the model becomes a collection of decoupled
solvable models. For analytical purposes, when β is small, it
is sometimes convenient to first consider the solvable case
βx̂ = 0 and then restore the isotropic situation βx̂ = βt̂ = β

perturbatively (see Sec. V).
As explained in Refs. [10,18,19], one can use the Fourier

expansion of eβ cos θ in terms of modified Bessel function of the
first kind and then integrate out the θ(x,t) variables. The Fourier
indices associated with the links coming out of the site (x,t)
in the space and time directions are denoted n(x,t),x̂ and n(x,t),t̂ ,
respectively. They can be graphically interpreted as currents
passing through the links. The partition function can then be
expressed as a sum of product of Bessel functions:

Z =
∑
{n}

∏
(x,t)

In(x,t),x̂ (βx̂)In(x,t),t̂
(βt̂ )e

μn(x,t),t̂

× δn(x−1,t),x̂+n(x,t−1),t̂ ,n(x,t),x̂+n(x,t),t̂
. (3)

The Kronecker delta function in Eq. (3) can be interpreted as
a current conservation and the terms in the partition function
as current loops (also called world lines) which can then be
statistically sampled [19].

The action given in Eq. (2) has a manifest global O(2)
symmetry which corresponds to shifting all the angles θ(x,t)

by the same arbitrary amount. This symmetry is the same
as the U (1) symmetry of a relativistic complex scalar field,
where the invariance under multiplication by a global phase

FIG. 2. Graphical representation of an allowed configuration of
{n} for a 4 by 32 lattice, β = 0.1 and μ = 3.0. The uncovered links
on the grid have n = 0, the more pronounced dark lines have |n| = 1,
and the wider lines have n = 2. The signs of the links with |n| = 1
lines are discussed in Appendix A. The large dots (red) on the t = 0
boundary need to be identified with the corresponding dots on the
t = 32 boundary in pairs with the same x coordinate. Similarly, the
slightly smaller dots (blue) on the x = 0 and x = 4 boundaries have
to be identified in pairs with the same t coordinate.

implies the particle number conservation. The sum of the
n(x,t),t̂ on the time links between two time slices is conserved
and is the particle number. In Refs. [10,11], we discuss
Bose-Hubbard models related to the O(2) model discussed
here where the particle number is actually related to numbers
of bosonic atoms.

For a system with periodic boundary condition in both space
and time directions, as considered in this paper, the world line
can wind around in both directions. The winding numbers are
important to understand the superfluid properties of the system
[37].

An typical allowed configuration for β = 0.1 and μ = 3 is
shown in Fig. 2 for Lx = 4 and Lt = 32. Sites at the boundary
should be identified as explained in the figure caption. The
uncovered links on the grid have n = 0, the more pronounced
dark lines have |n| =1 and the wider lines have n = 2.
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A discussion regarding the sign convention and the spatial
winding number of Fig. 2 can be found in Appendix A.

This configuration can be used to visualize a transfer matrix
that connects consecutive time slices. For instance, in Fig. 2,
the time slice 5 represents a transition between |1100〉 and
|0200〉 and its relative statistical weight can be obtained
from a transfer matrix that will be discussed in Sec. II B.
The configuration was generated using a sampling method
designed in Ref. [19] and briefly discussed in Sec. II C.

B. TRG approach of the transfer matrix

As explained in Ref. [10], the partition function can be
expressed in terms of a transfer matrix:

Z = TrTLt . (4)

The matrix elements of T can be expressed as a product
of tensors associated with the sites of a time slice (fixed t)
and traced over the space indices. To make the equations easier
to read, we use the notations nx for the time indices in the past
(n(x,t−1),t̂ ), the primed symbols n′

x for the time indices in the
future (n(x,t),t̂ ) and ñx for the space indices (n(x,t),x̂). The matrix
elements of T have the explicit form

T(n1,n2,...,nLx )(n′
1,n

′
2,...,n

′
Lx

)

=
∑

ñ1ñ2...ñLx

T
(1,t)
ñLx ñ1n1n

′
1
T

(2,t)
ñ1ñ2n2n

′
2...

. . . T
(Lx,t)
ñLx−1 ñLx nLx n′

Lx

, (5)

with

T
(x,t)
ñx−1ñxnxn′

x
=

√
Inx

(βt̂ )In′
x
(βt̂ ) exp[μ(nx + n′

x)]
√

Iñx−1 (βx̂)Iñx
(βx̂)δñx−1+nx,ñx+n′

x
. (6)

This construction can be represented graphically in a way
that helps understanding the allowed configurations such as the
one depicted in Fig. 2. The building blocks are the microscopic
tensors of Eq. (6) which are represented as crosses with spacial
half links in the horizontal direction representing the ñ indices
and vertical half links representing the n (bottom) and n′ (top)
indices. The traces over the spacial indices ñ in Eq. (5) are
represented in Fig. 3 as joined half links forming a complete
horizontal link. The product of transfer matrices are obtained

FIG. 3. Graphical representation of the transfer matrix
T(n1,n2,...,nLx )(n′

1,n′
2,...,n′

Lx
) as defined in Eq. (5). The horizontal indices

are summed over and the vertical indices are left open as explained
in the text.

by tracing the time indices and can be represented by piling up
copies of Fig. 3 in the vertical direction. The trace in Eq. (4)
can be visualized as a cylinder, or a torus if periodic boundary
conditions in space are imposed.

The Kronecker delta function in Eq. (6) is the same as
in Eq. (3) and reflects the existence of a conserved current
as discussed above, that we will call “particle number” in
the following. For periodic (spatial trace) or open (zero
spatial indices at both ends) boundary condition, the local
conservation law implies that the transfer matrix elements are
zero unless the sum of the two sets of indices [respectively
denoted n and n′ in Eq. (5)] are equal. In other words, the
transfer matrix is block diagonal in each particle number sector.
The particle number that reflects the above conservation law
is defined as

n =
Lx∑

x=1

nx =
Lx∑

x=1

n′
x. (7)

When the chemical potential μ is zero, there is a charge
conjugation symmetry which allows us to change the sign
of all the n in all the temporal sums without affecting the
final results. Given the rapid decay of the modified Bessel
function when the index n increases, good approximations can
be obtained by replacing the infinite sums by sums restricted
from −nmax to nmax. When the chemical potential is nonzero,
it is more efficient to shift the range in the same direction
as the sign of the chemical potential. In general, we call Ds

the number of states kept after truncation. In the following,
we will use a coarse-graining procedure for the transfer
matrix where we repeatedly apply a truncation at the same
value Ds .

For numerical purposes, we reduce the size of the transfer
matrix by using a blocking procedure [14,16]. It consists in
iteratively replacing blocks of size two in the transfer matrix by
a single site using a higher order singular value decomposition.
During the truncation, for a given pair of sites, we replace
the direct product D2

s × D2
s matrix by a Ds × Ds matrix. The

process is illustrated in Fig. 4. The Y-shaped parts in the bottom
part of the figure and their mirror versions in the top part,
as the truncating matrix D2

s × Ds [14] in the tensor product,
schematically represent this coarse-graining process. The full
technical details can be found in Refs. [14,16].

FIG. 4. Graphical representation of the coarse graining truncation
of the transfer matrix described in Fig. 3. The blocking procedure of
replacing blocks of two sites in the transfer matrix into a single site
represented by the Y-shaped structure.
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C. The worm algorithm

Because of the conservation law in Eq. (6), the terms of the
partition function can be interpreted as current loops which
can be statistically sampled [19]. The sampling procedure for
one complete worm algorithm update goes as follows. We
pick randomly a site on the lattice, then pick randomly a
neighboring direction in the (positive or negative) spatial or
time direction, change the current n to n ± 1 with a given
probability(the details of the accept-reject procedure are given
in the Appendix A of Ref. [19]). We repeat the above procedure
until we come back to the original random site. Because
of the conservation law, a particle number can be attributed
to a configuration. It can be calculated by summing the
temporal n between any two time slices. The particle number
distribution can be calculated by generating a large number of
configurations according to the above procedure.

An easily controllable source of error is the limited statis-
tics. There is also an unavoidable truncation error. Following
Ref. [19], |n| is constrained to be not larger than 20 in
Eq. (3). However, given that I20(0.1) exp(3 × 20)/I0(0.1) �
4 × 10−19, this is negligible for our calculations. By construc-
tion, there is a single worm and the algorithm cannot generate
disconnected loops. This is not believed to be a significant
source of error. Comparisons at small volumes where the
truncation errors are controllable [38] indicate that the worm
algorithm is statistically exact.

III. PARTICLE DENSITY CALCULATIONS

In this section, we show how to calculate the average
particle density using the TRG formulation. We then apply
the method numerically and compare the results with the
ones obtained with the worm algorithm. The particle number
conservation can also be exploited in the TRG approach. For
the initial one-site tensor T (x,t) in Eq. (6), we have

T ′(x,t) ≡ ∂T (x,t)/∂μ = 1
2 (nx + n′

x)T (x,t). (8)

Here nx and n′
x are the particle number associated with the time

indices of the original tensor T (x,t) in Eq. (6) with the tensor
indices omitted. Consequently, we can associate a particle
number n(i) with each eigenvalue λi of the transfer matrix T.
The average particle number density is an extensive quantity
defined as

ρ = 1

LxLt

∂ ln Z

∂μ
. (9)

From the expression of Z in terms of the transfer matrix and
the cyclicity of the trace, we have

∂Z/∂μ = LtTr(T′TLt−1), (10)

where T′ = ∂T/∂μ can be calculated by applying the chain
rule to Eq. (5). This can be achieved iteratively by defining an
“impurity” tensor initialized with the derivative of the initial
tensor and then blocked and symmetrized with the original
“pure” tensor. This guarantees the recursive replacement of
T (x,t) by T ′(x,t) in the transfer matrix as prescribed by the
chain rule. This procedure can be simplified if we know the
particle number n(i) associated with each eigenvalue λi as

discussed above. We can then write

1

Lt

∂ ln Z

∂μ
=

∑
i λ

Lt

i n(i)∑
i λ

Lt

i

. (11)

In practice, finding the particle number associated with the
eigenvalues is not completely straightforward. It requires to
keep track of the particle number in the projected basis or to
write the blocking algorithm sector by sector. The enforcement
of the conservation law in the coarse-graining process makes
the numerical calculation more stable. The tensor elements
that violating the conservation law are exactly zero. If we
only handle nonzero elements, we can reach relatively larger
values of the dimension Ds in the truncation procedure and
get more accurate results. We enforce the conservation law in
TRG calculations done below.

Knowing the n(i) associated with λi also allows us to define
a probability P (n) for the particle number n:

P (n) =
∑

i:n(i)=n

λ
Lt

i

/ ∑
i

λ
Lt

i . (12)

These probabilities can also be calculated directly from
histograms obtained with the worm algorithm. Both methods
can be used to calculate and compare the average particle
number density using

ρ = 1

Lx

∑
n

nP (n). (13)

With the TRG method, we studied the distribution of
P (n) for various values of μ spanning a range covering
the boundary of the MI phase and the SF phase. The other
parameters are kept fixed at Ds = 201, β = 0.1, Lx = 32,
and Lt = 128. When μ = 2.8 and 2.85, the distribution bears
one-bin structure with n = 0, corresponding to the MI phase.
When μ = 2.9, 2.95, and 3, the distribution carries more bins,
corresponding to the SF phase, which shows that the phase
transition occurs in the range μ = (2.85,2.9) as illustrated in
Fig. 5. We then compared the distributions obtained with the
TRG and the worm algorithm for μ = 3, which is near the
middle to the SF phase. The results are shown in Fig. 6.
To the best of our knowledge, the errors associated with
the worm calculations are purely statistical. The errors made
with the TRG are due to the repeated truncation from D2

s

to Ds indices in the coarse-graining process. We have used
Ds = 101, 201, and 301 and the variations are comparable to
the worm errors. Overall, the results from Ds = 301 are very
close to the worm calculation. The particle number distribution
calculated from the worm histograms are from averaging over
configurations generated with 12 different initial random seeds
and one million configurations per seed. When the truncation
dimension Ds is fixed, the accuracy becomes worse with
increasing Lx . When the time dimension Lt becomes large
enough, the particle density distribution is almost centralized
in one bin and therefore varies less with increasing Ds .

IV. CALCULATION OF THE THERMAL AND
ENTANGLEMENT ENTROPY

In this section, we explain how to compute the thermal
entropy and the entanglement entropy in a consistent way. We
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FIG. 5. The particle number distribution P (n) with β = 0.1 when
μ varies between the MI and SF phases. For μ = 2.80 and 2.85, we
have only n = 0. For μ = 2.90, 2.95, and 3.0, there are three visible
groups of bins. With μ increasing, the distribution shifts to the right
with larger most probable particle number.

construct the reduced density matrix following Refs. [29,30].
More specifically, we consider the path integral representation
of the thermal density matrix [Eq. (9) in Ref. [29]] for the O(2)
model. However, we use the (n1,n2, . . . ,nLx

) representation
and the corresponding transfer matrix introduced in Sec. II B
rather than the original spin variables. In the following, the
eigenstates of the transfer matrix will be treated as quantum
states.

We consider a system, denoted AB, and subdivide it into
two parts denoted A and B. We first define the thermal density
matrix ρ̂AB for the whole system

ρ̂AB ≡ TLt /Z. (14)

We have the usual normalization Trρ̂AB = 1. If the largest
eigenvalue of the transfer matrix is non degenerate with an

13 14 15 16 17 18 19 20 21
0.0

0.1

0.2

0.3

0.4

P(
n)

n

D
s
=101

D
s
=201

D
s
=301

 Worm

β = 0.1,  μ=3,
Lx =32, Lt =128

FIG. 6. Comparison of the particle number distribution P (n)
between the worm algorithm and TRG with different Ds .

eigenstate denoted |	〉, we have the pure state limit

lim
Lt→∞

ρ̂AB = |	〉 〈	| . (15)

In the following, we will work at finite Lt and will deal with the
entanglement of thermal states [39]. In general, the eigenvalue
spectrum {ρABi

} of ρ̂AB can then be used to define the thermal
entropy

ST = −
∑

i

ρABi
ln(ρABi

). (16)

The subdivision of AB into A and B refers to a subdivision of
the spatial indices. We define the reduced density matrix ρ̂A as

ρ̂A ≡ TrBρ̂AB. (17)

We define the entanglement entropy of A with respect to B as
the von Neumann entropy of this reduced density matrix ρ̂A.
The eigenvalue spectrum {ρAi

} of the reduced density matrix
can then be used to calculate the entanglement entropy

SE = −
∑

i

ρAi
ln(ρAi

). (18)

The computation of the thermal entropy can be performed
using the eigenvalues of the transfer matrix λi discussed in
Sec. III together with the normalization ρi = λ

Lt

i /
∑

j λ
Lt

j .
Note that if we introduce a temperature T and energy levels
by identifying λ

Lt

i with exp(−Ei/T ), we recover the standard
relation ST = 〈E〉 /T + ln Z. This identification makes clear
that T ∝ 1/Lt . In Eq. (19), we will use units where T = 1/Lt .

For the computation of the entanglement entropy, we
assume that A has 2
A sites, and B has 2
B sites and then
perform the 
A and 
B blockings for the subsystems. The
coarse-graining along the spatial direction ends with two sites,
one for A and the other for B. We can then contract the
indices from the two sites in the time direction without further
truncation. Tracing over the space indices linking A and B, we
obtain the transfer matrix T({nA},{n′

A},{nB },{n′
B }) for the whole AB

system. Taking the Lt power, tracing over nB , and normalizing,
we obtain the reduced density matrix ρ̂A({nA},{n′

A}). This is
illustrated in Fig. 7.

In the following, we consider the case of 
A = 
B . There is
no numerical difficulty in considering the system with unequal

A and 
B since the space indices are not renormalized in the
transfer matrix approach.

As a first study, we have considered the cases β = 0.1,
Lx = 4, and Lt = 16, 32, 64, and 128 with μ between 2.8
and 3.2. Both the thermal entropy and entanglement entropy
develop a peak over the SF phase. We see that for small Lt , the
thermal entropy is larger than the entanglement entropy, but
as we increase Lt , the entanglement entropy becomes larger
than the thermal entropy. The results are shown in Fig. 8. For
both the thermal entropy and the entanglement entropy, a fine
structure appears for large Lt . This is discussed in the next
section.

V. THE FINE STRUCTURE OF THE SF PHASE

In this section, we first give an idea of the large structure of
the phase diagram (where the different SF and MI phases are
located) and then explain in more details the fine structure of
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FIG. 7. Illustration of the entanglement entropy calculation. The
horizontal lines represent the traces over the space indices. There are
Lt of them, the missing ones being represented by dots. The two
vertical lines represent the traces over the blocked time indices in A

and B.

a single SF phase, more specifically along a line of constant β

and where μ is varied in order to interpolate between the the
two MI phases with successive values of ρ.

At small β, we have mostly MI phases with small SF phases
in between them. A good qualitative picture can be obtained
by temporarily considering the anisotropic case βx̂ = 0 where
the problem is exactly solvable and then restoring βx̂ = βt̂ = β

perturbatively. When βx̂ = 0, we have only onsite interactions
and in the large Lt limit, the problem reduces to finding the
value n� of n which maximizes In(βt̂ )eμn for given μ and
βt̂ . The largest eigenvalue of T is then (In� (βt̂ )eμn�

)Lx . The
quantum picture is that for large Lt , the relevant state has

2.8 2.9 3 3.1 3.2
0

0.5

1

μ
2.8 2.9 3 3.1 3.2

0

0.5

1EE
TE

0

1

2

3

0

0.5

1

1.5

Lt=64 Lt=128

Lt=32Lt=16

FIG. 8. Entanglement entropy (EE, dash line) and thermal en-
tropy (TE, solid line) for β = 0.1, Lx = 4, and Lt = 16, 32, 64, and
128.

2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20

-0.8

-0.6

-0.4

-0.2

0.0

0.2

-ln
( λ

i)

μ

 1st EL
 2nd EL
 TE - 0.5

FIG. 9. The two lowest energy levels (EL, solid lines) as a
function of μ for Lx = 4, Lt = 256, β = 0.1, and Ds = 101. As
μ increases, lines of successive slopes 0, −1, −2, −3, and −4 are at
the lowest level. At each crossing, the thermal entropy(dash dot line)
jumps. The values of thermal entropy are shifted vertically by −0.5
to make the figure readable.

all Lx sites in the n� state and we are in the MI phase with
ρ = n�. In summary, the approximate large structure at small
β is obtained by increasing μ from zero and going through the
MI phases with n�= 0, 1, 2, . . . .

The fine structure of the SF phase between the MI phases
can be approached by restoring βx̂ = βt̂ perturbatively. The
SF phases are approximately located near values of μ where
n� changes. To be specific, we will consider the example of
β = 0.1 and Lx = 4, where the transition occurs near μc =
2.997 . . . when βx̂ = 0. In this limit, we have 16 degenerate
states |0000〉 , |1000〉 , . . . , |1111〉 which can be organized
in “bands” with n = 0 (1 state), n = 1 (4 states), etc. Below,
we call the approximation where the indices inside the kets are
only 0 or 1 the “two-state approximation.”

The effect of βx̂ is to give these bands a width and lift
the degeneracy. The energy levels are defined in terms of the
eigenvalues of the transfer matrix as

Ei = − ln(λi). (19)

If we plot the energy levels versus μ, we see that we have
successive crossings corresponding to states of increasing
n. This is illustrated with the two lowest energy levels in
Fig. 9. Notice the piecewise linear behavior with slopes
corresponding to the particle number 0, −1, −2, −3, and −4.
As the levels cross the thermal entropy rises to ln 2.

We observe that near μ = 2.90, the lowest energy state
changes from |0000〉 to a state with n = 1:

|	,n = 1〉 = 1
2 (|1000〉 + |0100〉 + |0010〉 + |0001〉). (20)

It is easy to calculate the reduced density matrix for A defined
as first two sites and B as the last two sites in the limit where
Lt becomes infinite and for values of μ where |	,n = 1〉 is
the unique ground state

ρ̂A = TrB |	,n = 1〉 〈	,n = 1|
= 1

4 (|10〉 + |01〉)(〈10| + 〈01|) + 1
2 |00〉 〈00| . (21)
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The eigenvalues of ρ̂A are 1/2, 1/2, 0, and 0, and the
entanglement entropy of this reduced density matrix is ln 2.

A n = 2 state becomes the ground state near μ = 2.95. It is
in good approximation a linear superposition of the six states
with two 0’s and two 1’s. The two states |1010〉 and |0101〉
have a slightly larger coefficient suggesting weak repulsive
interactions. In the numerical expression of this ground state,
we also have contributions from states such as |2000〉 but
with a small coefficient. In general, for small β, the two state
approximation is good (the corrections are small).

A n = 3 state becomes the ground state near μ = 3.03. The
ground state can in good approximation be described as

|	,n = 3〉 = 1
2 (|0111〉 + |1011〉 + |1101〉 + |1110〉), (22)

which is |	,n = 1〉 with 0’s and 1’s interchanged and
one can interpret the 0 as “holes.” Finally, near μ = 3.10,
|1111〉 becomes the ground states (with again many small
corrections). In general, there is approximate mirror symmetry
about the “half-filling” situation.

A similar approximate two state description is valid in the
next SF phase located between the MI phases with ρ 1 and 2.
One just needs to replace 0 by 1 and 1 by 2.

We now follow the same path in the phase diagram but from
the point of view of the world lines generated with the worm
algorithm with Lt = 256. Typical world lines are displayed in
Fig. 2. Given that Lt = 256 is relatively large, by taking μ

approximately in the middle of the density plateaus (discussed
below; see Fig. 11), we obtain that most configurations have
n corresponding to the average value. Figure 10 shows typical
results for μ =2.93 (n = 1), 3.00 (n = 2), 3.07 (n = 3) and
3.14 (n = 4) using a graphical representation similar to Fig. 2.
Their spatial winding number are discussed in Appendix B.

The most important feature of these configurations is that
almost all the |n| are 0 or 1. For a given particle number n,
between most time slices we have n time links carrying a
current 1 and Lx − n time links carrying no current. In rare
occasions, we observe that the lines merge or cross. Overall, we
can think of these configurations as a set of weakly interacting
loops carrying a current 1. This is in line with the dominance of
the states like |1010〉 over states like |2000〉 discussed above.

We now proceed to calculate the thermal entropy and the
entanglement entropy for Lx = 4 with Lt = 256 (as discussed
above), and also for larger lattices Lx = 8 with Lt = 512, and
Lx = 16 with Lt = 1024. Figure 11 shows the fine structure in
the SF phase for increasing sizes. In each case, we go through
the MI(ρ = 0), SF, and MI(ρ = 1) phases successively as we
keep increasing μ while keeping the other parameters fixed,
as already illustrated in Fig. 1. We kept the same truncation
dimension Ds = 101 for the three cases.

From Fig. 11, we observe an oscillating structure in the
entanglement entropy and the thermal entropy. The number
of sites in the spatial direction Lx dictates the fine structure.
There are Lx transition points in the entanglement entropy
and Lx peaks in the thermal entropy. With Lx increasing, the
transition points close to the two boundaries become difficult
to resolve as shown in the case of Lx = 16, Lt = 1024 in
Fig. 11(c). Higher μ resolution and larger Ds are needed to
obtain a clearer picture of the oscillations. The approximate
mirror symmetry of the entanglement entropy with respect to
the half-filling point persists for larger lattices. As far as the

( ) ( )

( ) ( )

FIG. 10. Worm configurations for μ = 2.93, n = 1 (a); μ =
3.00, n = 2 (b); μ = 3.07, n = 3 (c) and 3.14, n = 4 (d). In all
cases, β = 0.1, Lx = 4, and Lt = 256.

thermal entropy is concerned, the height of the peaks are all
close to ln 2, which corresponds to the twofold degeneracy in
the ground state. The peaks are located at the place where the
energy levels from the ground state and the first excited state
cross as shown in Fig. 9.

As Lx increases, the fine structure near the two boundaries
connected to the MI phases is not so prominent as the middle
regime and a better resolution is needed to discern the fine
structure. A similar discussion applies to the situation when the
system experience the MI(ρ = i), SF, MI(ρ = i + 1) phases
successively and we have checked that the same type of
fine structure appears. Note also that for small Lx and large
enough Lt , ρ has significant plateaus that could be qualified as
incompressible regions. However, the width of these regions
shrinks like 1/Lx as Lx increases.
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FIG. 11. Fine structure of the entanglement entropy (EE, blue
circle), thermal entropy (TE, green square), and particle density ρ

(red triangle) spanning the MI(ρ = 0), SF, and MI(ρ = 1) phases
successively with μ increasing at fixed β = 0.1. There are three
different system sizes: Lx = 4 with Lt = 256, Lx = 8 with Lt = 512,
and Lx = 16 with Lt = 1024, respectively. The thermal entropy has
Lx peaks culminating near ln 2 � 0.69; ρ goes from 0 to 1 in Lx steps,
and the entanglement entropy has an approximate mirror symmetry
near half filling where it peaks.
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FIG. 12. Energy levels for β = 0.1, Lx = 4.

VI. CONCLUSIONS

In summary, we have used the TRG method with the con-
servation law implemented explicitly to calculate the particle
number density, the thermal entropy and the entanglement
entropy for the O(2) model with a chemical potential. The
particle number distributions agree well but not perfectly
with the results obtained with the worm algorithm. The
discrepancies seem to increase with Lx . This can probably
be explained by the fact that at small β, the spectrum
has bands with Lx , Lx (Lx−1)

2 , etc. states with increasing n.
Some of these bands merge when μ is increased enough
to get in the SF phase. As Lx increases, the bands become
denser and we will typically keep the lowest energy states
irrespectively of their particle number. Taking into account
the particle number in the truncation process may help
getting more accurate distributions. The energy bands are
illustrated in Fig. 12. More generally, the decomposition of
states in charge sectors could help understanding truncation
errors [40] more systematically. This question is under active
investigation.

Besides the large structure associated with the alternation
between SF and MI phases with integer particle number
density, we found that in the SF regime, there is an interesting
fine structure controlled by the spatial dimension Lx . The
entanglement entropy, the thermal entropy and the particle
number density vary in a way that is consistent with each
other. The thermal entropy shows Lx peaks located at where
the energy levels from the ground state and first excited state
cross. Degenerate perturbation theory explains why the energy
levels cross while varying the chemical potential. As a result,
the stepwise structure occurs in the particle number density
in the SF regime, as already observed in Ref. [19]. The
particle number and the winding number of the world lines
increase by one unit at a time. The entanglement entropy
shows Lx steps and an approximate mirror symmetry with
respect to the half-filling point. The details of the fine structure
depend on the ratio Lx/Lt and the infinite volume limit
of the two-dimensional classical model needs to be defined
carefully.
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It is clear that increasing Lt generally emphasizes the sharp
features. The dependence on the aspect ratio Lx/Lt in the
infinite volume limit has been studied for a hard-core boson
Hamiltonian at half filling, which is equivalent to the quantum
S = 1/2 XY model [41] and for two solvable models at the
conformal critical point [42]. We are planning to carry on a
similar study for the model considered here.

In the approximation where the eigenstates of the transfer
matrix are made of states with only 0 and 1 for all sites, or
correspondingly if the world lines have mostly links carrying
currents with |n| equal to 0 or 1, this symmetry corresponds
to interchanging 0 and 1 and the particle number n with Lx −
n which explains the approximate mirror symmetry of the
entanglement entropy.

From Refs. [10,11], the restriction to states with only 0 and 1
magnetic quantum number simplifies the Hamiltonian (Sz and
(Sz)2 have the same effect on the restricted subspace) and sug-
gests the correspondence with the spin-1/2 quantum XY model
on a line with Lx sites and a magnetic field h(in suitable units).
One can use the exact equivalence to a quadratic Hamiltonian
for a spinless fermion and show that the fermion number is n =
Lx(1 − arccos(h)/π ). By changing h → −h, one changes
n → Lx − n. Here h corresponds to μ − μh.f. in the O(2)
problem, with μh.f. the chemical potential for n = Lx/2.

As a general summary, in the SF phase, the chemical
potential determines the relevant particle number sector. In
each sector, the sum of the indices of the transfer matrix adds up
to a given number n, however there are n + 1 ways to distribute
the total particle number over the two subsystems A and B. The
entanglement entropy defined by Eq. (18) characterizes this
uncertainty. We are in the process of developing new nu-
merical methods for a better general understanding of this
question.

We believe that the fine structure of the entanglement
entropy described in our article can be observed in quantum
models such as the Bose-Hubbard, as studied in Refs. [12,13].
We also would like to mention some analogies. As the
chemical potential can be interpreted as an imaginary gauge
field in the time direction, it is not surprising that studies of
Polyakov’s loop [34,35] (Wilson loops closing in the periodic
time direction) show similar fine structure. Note also that the
crossing pattern of the energy levels as a function of μ found
here resembles the energy crossing found in a study of the
spectrum of rotating tubes as a function of the rotation rate for
a proposed cold atom experiment [36].
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APPENDIX A: REMARKS ABOUT FIG. 2

In this appendix, we discuss the sign convention and the
spatial winding number of Fig. 2. We also explain why this
configuration is typical.

The sign of the n associated with links with |n| = 1 can be
figured out from the following information. All the (vertical)
temporal link indices are positive. The sign of the (horizontal)
spatial links can be obtained using the conservation law. On
time slices 5, 7, and 17, the current moves to the right and
the sign is (by convention) positive. On time slices 21 and 22,
the current moves to the left and the sign is negative. In this
configuration, the winding number in the temporal direction is
2, and the winding number in the spatial direction is 0 (there
are as many positive as negative spatial n).

The fact that the configuration of Fig. 2 is typical for β =
0.1 and μ = 3 can be understood from the numerical values
of the weights. Because of the large value for μ, the weight
for the temporal links with n = 0 [I0(0.1) � 1.0025] and
n = 1 [I1(0.1) exp(3) � 1.00553] are almost the same, while
the weight for n = 2 [I2(0.1) exp(6) � 0.5047] is smaller.
The weight for n = −1 [I1(0.1) exp(−3) � 0.002492] is very
small, and there are no temporal links with negative values of
n in the configuration. For the spatial links, the relative cost of
a lateral move is I1(0.1)/I0(0.1) � 0.05, and there are only six
lateral moves. The fact that there are only two temporal links
with n = 2 can be understood from the fact that the merging of
two n = 1 lines into one n = 2 line requires one lateral move
in addition of a weight about twice smaller.

APPENDIX B: SPATIAL WINDING NUMBERS IN FIG. 10

In this appendix, we discuss the spatial winding numbers
of the configurations of Fig. 10. For μ = 2.93, all the time
(vertical) links have n = 1. For the spatial links there are 20
right movers and 16 left movers (so the spatial winding number
is 1). For μ = 3.00 (n = 2), between most time slices, there
are two vertical links carrying a n = 1 current, and the two
lines only merge four times into a single n = 2 line for a
small number of time steps (the total is five vertical links with
n = 2). There are 26 right movers and 34 left movers (so the
spatial winding number is −2). For μ = 3.07 (n = 3), between
most time slices, there are three vertical links carrying a n = 1
current, There are five occurrences where two n = 1 merge into
a single n = 2 line for a small number of time steps (the total
is 10 vertical links with n = 2). There are also three crossing
(points where the four lines attached all have |n| = 1). There
are 19 right movers and 15 left movers (so the spatial winding
number is +1). For μ = 3.14 (n = 4), β = 0.1, Lx = 4, and
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Lt = 256, there are essentially four parallel vertical lines each
carrying a n=1 current except for four occurrences where they

briefly merge (11 n = 2 vertical lines, four right movers, four
left movers, and no spatial winding number).
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