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We propose a hole decomposition scheme to exactly solve a class of spin-1 quantum Ising models with
transverse or longitudinal single-ion anisotropy. In this scheme, the spin-1 model is mapped onto a family of
the S=1/2 transverse Ising models, characterized by the total number of holes. A recursion formula is derived
for the partition function based on the reduced S=1/2 Ising model. This simplifies greatly the summation over
all the hole configurations. It allows the thermodynamic quantities to be rigorously determined in the thermo-
dynamic limit. The ground-state phase diagram is determined for both the uniform and dimerized spin chains.
The corresponding thermodynamic properties are calculated and discussed.
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I. INTRODUCTION

The phase transition driven by quantum fluctuations is
one of the fundamental issues in quantum many-body sys-
tems. A number of novel phenomena associated with the
transition such as the quantum critical behavior has been
observed in a variety of condensed matter materials.!> One
of the prototype model systems exhibiting the quantum
phase transition is the one-dimensional (1D) spin-1/2 Ising
lattice with a transverse field, namely the transverse Ising
model (TIM),?= defined by

HTIM=—E(JS§ S =S, (1)
J

where § ; is the spin operator at the site j on a one-
dimensional lattice of length L. The transverse field % intro-
duces quantum fluctuation to the system, leading to a
quantum phase transition from the ferromagnetic/
antiferromagnetic-ordered states to the paramagnetic-
disordered states above a critical value h.=J/2. Actually the
model is equivalent to a free spinless fermion system and
can be exactly solved by applying the Jordan-Wigner
transformation.®” Based on the exact solution, all physical
quantities including the ground-state energy, the low-energy
excitations, the specific heat, and other thermodynamic func-
tions can be evaluated. This provides a thorough understand-
ing of the quantum critical behavior of this system.

However, in real materials, the moments of atoms may be
larger than 1/2. Despite immense efforts in the past three
decades it is still very difficult to find exact solutions of the
S=1 or other higher spin quantum Ising systems. This is
partly due to the existence of the spin-neutral states $°=0
(referred to as holes hereafter) in addition to the two spin-
polarized states $°= * 1 at each site in the S=1 spin chain. In
these models, a hole can decay into a pair of spin-polarized
states and vice verse, thus rendering the Jordan-Winger ap-
proach invalid in exactly solving the S=1 TIM.

In this paper, we study a class of one-dimensional S=1
quantum Ising model (QIM) defined by the following Hamil-
tonian:
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H==2 (S8 +1), 2
J

where fj=D;(S;)2+D]Y(SJY)2+D§(SJZ~)2 is the single-ion aniso-
tropy term with site-dependent D} (a=x,y,z).

The above model has a classical limit where D;=D”. This
corresponds to the Blume-Capel model.® So the present
model can be regarded as the quantum generalization of the
Blume-Capel model. The simplest quantum case is the uni-
form chain defined by’

Ho = - 2 [S385,, + D(S})°]. (3)
J

In two or higher dimensions, this kind of quantum Ising
model with single-ion anisotropy was studied by a number of
authors, based mainly on the mean-field approximations.'®-!!
In particular, the ground state of model (3) was shown to be
equivalent to the S=1/2 TIM defined by Eq. (1).'> Such
equivalence is also valid for quantum Ising models with
bond and site alternations'® or geometrical frustrations such
as a fully frustrated spin-1 Ising delta chain.'*

The purpose of the present paper is to study the physical
properties of the model described by Eq. (2) based on the
exact solution. The key idea in solving the proposed S=1
model is to divide the total Hilbert space of the S=1 system
into a number of subspaces labeled by the number of holes.
This is what we call the hole decomposition scheme (HDS).
This HDS was developed in our recent work,® where a re-
cursion approach based on the HDS is suggested for the uni-
form chain. In the present paper, we give more comprehen-
sive investigations for various properties of the S=1 model,
including the case with dimerization."”> In particular, we
show that for a given hole configuration, each sublattice sys-
tem with purely polarized spins can be exactly solved in that
case. Based on the exact solution we study how the quantum
phase transitions and thermodynamic properties are affected
by the interplay between the dimerization and the single-ion
anisotropy. Depending on the strength of dimerization, we
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find that the system undergoes a quantum phase transition
where the criticality is the same as that of the uniform S
=1/2 TIM.

We note that the spin-1/2 TIM can be realized in certain
low-dimensional magnetic materials.'®!” For the systems
with local moments larger than 1/2, the single-ion anisotropy
generated by crystal fields and the dimerization may also
become important.!® The S=1 TIM with the crystal-field
splitting was used to describe the ferroelectric transition in
SrTiO3." In a class of quasi-one-dimensional spin chains
such as [Ni,(Medpt),(v-0x)(H,0),](Cl0,),-H,0, the mag-
netic Ni** ion shows not only a single-ion anisotropy?*2! but
also a S=1 bond-alternating pattern, where Medpt is the
bis(3-aminopropyl) methylamine.?>?* Recently, cold atoms
or polar molecules in optic lattices were shown to be ideal
systems to realize various quantum spin models.>* In particu-
lar, the spin-1 models can be implemented by trapping polar
molecules where the spin degrees of freedom can be de-
scribed by the hyperfine vibrational states.?

This paper is organized as follows. In Secs. II and III, we
discuss some general properties of the model and introduce
the HDS. In Sec. IV, we solve exactly the Hamiltonian in the
presence of dimerization. In Sec. V, we study the low-energy
excitation spectra and quantum phase transitions based on
the exact solutions. In Sec. VI, we discuss in detail the re-
cursion method introduced in Ref. 9 for evaluating thermo-
dynamic quantities. Finally, we give a summary in Sec. VIL.

II. HOLE DECOMPOSITION SCHEME

Let us consider a S=1 Ising lattice with single-ion aniso-
tropy, defined by Eq. (2). (57,5},S55) are the S=1 spin opera-
tors at lattice site j=1,2,...,L, W1th the lattice length L. The
uniform classical Blume- Capel model® corresponds to the
symmetric case with D;=D7=D. Because only two of these
D;‘ terms are independent, we shall mainly consider the
quantum case with D;=D; and D;=D;=0, without losing
generality. The case W1th DZ¢0 w111 be discussed later. We
shall mainly focus on the d1merlzat10n case where

Jrjr=J1, Jyy=Ty, D2j—1:D1’ D,i=D,. (4)

By definition, one has (S")2 1(S/ST+857S+S]87+5;S]).
So it is straightforward to show that (Sx)i does not couple
§7=0 state to §j= = 1 states. Thus (S7)* commutes with (S%).
This leads to the following theorem

A. Theorem 1

When S=1, the total hole number operator 1%
—EL 1(S;)2 commutes with the Hamiltonian for any site-
dependent J; and D;

[No,H] =0. (5)

It means that the total number of holes is a conserved
quantity if S=1. Consequently, the eigenstates of H can be

classified by the eigenvalue p of No. In the discussion below,
we will call the subsystem with p holes as the pth sector. Let
Hp be the Hilbert space of the pth sector, the total Hilbert
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FIG. 1. (Color online) The schematic of the energy-band hierar-
chy. The boxes represent the subbands of the corresponding pth
sector. A(({’ ) and A;{’) are the minimal gaps for the fermionic and hole
excitations, respectively, in the pth sector. Several explicit results of
these gaps are given in Sec. IV.

space is then given by the sum of all the subspaces
HzH()@HIEB €BHL (6)

A complete set of the eigenstates in the pth sector forms a
subband of the whole spectrum. Generally the lowest
eigenenergy of the pth sector satisfies the following theorem

B. Theorem 2

Let E(p,L) be the eigenenergy, corresponding to the
eigenstate |p, L) of H, and Ey(p,L) be the lowest eigenenergy
in the pth sector, then the following inequality holds

EO(P’L) < EO(P + 1’L) (7)

This relationship is an extension of the Lieb-Mattis theo-
rem derived initially for the uniform systems with ferromag-
netic Ising couplings.?¢ It still holds no matter whether the
Ising couplings are ferromagnetic or antiferromagnetic. It in-
dicates that in the absence of the Df term, the ground state
always lies in the p=0 sector and the energy spectrum of the
system has a hierarchical structure.

There are two kinds of excitations in the system. One is
the fermionic excitation within a given sector. The corre-
sponding excitation energy is defined by E(p,L)—Ey(p,L).
The other is the hole excitation and the excitation energy
with respect to the ground state is given by E(p,L)
—Ey(0,L). There are two kinds of minimal excitation gaps
corresponding to these excitations

AP = E|(p,L) - Ey(p,L),

AP = Ey(p,L) - Ey(0,L). (8)

Figure 1 shows schematically the hierarchical band struc-
ture of the system. Within each band (or each box shown in
Flg 1) there are fermionic excitations, with minimal gag}s
A . While the minimal gaps of the hole excitations A
increase with p when the longitudinal anisotropy D§=O

III. MAPPING ONTO THE SPIN-1/2 TIM’S

The eigenstates of the Hamiltonian (2) can be generally
expressed  as |\If)=2ijml,m2,...,mL|m1,mz, --emy), with
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Fy\ m,.-.m, being the wave function. As the total spin and its
z component are not conserved, the summation runs over all
m j=0, =+ 1 states. However, by theorem 1, the local holes are
good quantum numbers and can be regarded as nonmagnetic
local impurities embedded in the S=1/2 Ising system. As-
suming in the pth sector the holes are located at x, (n
=1,2,...,p), then the corresponding eigenstates can be ex-
pressed as |‘I’([,)>=Z,,1/Ff,’,’l iy HL _ ®l;), where =+ 1
if j#x, and rﬁxn:O.

In the p=0 sector, there are only two spin states at each
site, corresponding to 771;= % 1, respectively. They are in one-
to-one correspondence with the states of the spin-1/2 (Pauli)
operators a7: S| ><201|m Y=ni i ). | 3. One has then the map-
ping relatlonshlp Sj S] =207, S; S+—1:> * o* Thus,
(S)‘)2 acts like (l+o")/ 2. The orlgma] Hamlltoman when
actmg on the p=0 subspace has the following reduced form

Hypy= E]o‘z Ty - EDj(l +07). (9)
J
This is just the spin-1/2 Ising model with bond (site)-
dependent Ising couplings and transverse fields.

Now let us turn to the p=1 sector. If the hole is located at
the 51te xl, the correspondmg state can be written as |‘If( 1

=35 F . Ay i Oy ity ). Now  be-
X+

cause the bonds connecting the hole are broken, the reduced
Hamiltonian, obtained by acting the original one on the p
=1 sector, is given by

H(I,L)=H(,o,x1—1)+H(,0,L—x1)—D ) (10)

X

IOm

where H(’(),l) is the Hamiltonian of the spin-1/2 TIM segment
of lengths [ imposed by the open boundary condition. If
|/ (x;—1)) and |¢/(L-x,)) are the eigenstates of the seg-
ments H(,O,xl—l) and H('O’L_xl), respectively, then

W) =[r - D) @ [0,) ® [fL-x)) (1)

is the eigenstate of H(; ;). This HDS can be easily general-
ized to the multihole sectors. For instance, the reduced
Hamiltonian in a p-hole sector is given by

P
CHH{ ) - EDX,

n=1

Hyon= H(,(),xl—l) + H(,O,xz—xl—l) +-

(12)

where x,,’s are the positions of holes. Similarly, the eigenstate
of H, ) can then be expressed in terms of those of the indi-
vidual segments.

Therefore, all the eigenstates of the S=1 QIM [Eq. (2)]
can be obtained by solving a set of the spin-1/2 TIMs. For
the pth sector, the number of the S=1/2 TIM segments are
p+1 or p, depending on whether the original chain is peri-
odic or open. Note that the hole positions may vary along the
chain, so there are many different hole configurations in a
given sector. The decomposition of the total Hilbert space
into the sum of subspaces can be formally represented by
Re1]%L = 2919290102802 ®1%20 - @ 1%L,
where the dimension of the S=1 system is given by dim H
=2+ 1)F=3] 2L rCh=3]_dim H,,.
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IV. DIMERIZED SPIN CHAIN
A. Nonhole sector

In this section, we follow the standard approach intro-
duced in Refs. 6 and 27 to diagonalize the p=0 sector of the
S=1 model [Eq. (9)]. We introduce the fermion operators o
and ¢ and use the Jordan-Wigner transformation to rewrlte
Eq. (9) as follows:

H(O,L)=.E CJA/q ) (c ja© q —¢Bjgcq
ja

+ Hpp,

(13)

where Hpp=J,(cici+cici—crel—cre)(Kp+1), A=A, =
Dj5j ¢i01g=Sj101g  and - Bj==By=-J;8j,
_19,_1 ,- Notice that Hpy is the boundary term (which dis-
appears for the open chains) and can be neglected in the
thermodynamics limit.
Next, we introduce the Bogoliubov transformation as in
the following:
=2 (grjc;j + hij;)Q =2 (gltjc;'r +hyic;),  (14)
J J
where, 7, and 7;1 are the fermionic quasiparticle operators
with quasimomentum k. They satisfy the usual anticommu-
tation relations. While g;; and 7, are coefficient matrices
which should be complex in general. Then, H, ;) becomes

. 1 1
Hyp= 2 AR i+ 52 Aj- 52 Alk).  (15)
k j k

If we define (®;);=g;;+h; and (Vy);=gyj—hy,. the eigen-
value A(k) can be solved by

M@y = N ()( @5 M (W), = A*(k) (W), (16)

with M being a symmetric matrix defined by M=(A-B)(A
+B),  or  M;,=(D;D,+4J; \J, )8 ,+2DJ; 18,
+2DJ, 0, 1. For the dimerized (or alternating) chain, the
M matrix depends on the boundary conditions and the parity
of the chain length (even or odd). For simplicity, we here

consider the case of periodic chain with even L, where

a, by 0 - 0 b
by a by, -+ 0 0
0 b, a - 0 0

M= (17)
0 0 0 - a b
by 0 0 - b a

with a;=D}+4J5, by=2D,J,, a,=D3+4J3, and b,=2D,J,.
In order to solve Eq. (16) with this M matrix, we employ
the following Ansatz:

(Pr)yj=A, explik(2/)],

(Pp)ajur =A, explik(2j +1)]. (18)

The ratio 7=A,/A, is then a measure of dimerization, deter-
mined by
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FIG. 2. The representative fermionic excitation spectra in the
nonhole sector of the S=1 QIM with 0>0, J,=1.01, J,=1, D,
=1.82, and D,=0.9. This kind of excitation for a sector with fixed
hole number is similar though the quasimomentum is determined by
the corresponding secular equation.

a—a, =W

=1 22— 7 19
2[be* + bye'*] (19)

where

W= \“"(az—al)2+4(b1 —b2)2+ 16b1b2 COS2 k. (20)

Note that when a;=a, and b;=b,, we have 7=*1, as it
should be for the uniform chain.

The eigenvalue A%(k) is then obtained by A?(k)=1"2=+ 2 ,
so that one has four branches of quasiparticle excitations

Aub)= =TI = (= 1)1 =P+ Qcos 2k, (21)

with r=1,2, T?=3(D}+ D3 +4J3+4J3), PT*=DID}+16J3J)3,
QI'*=8D,D,J,J,, and k=27m/L, (n=-L/2,- L/2—1)

It should be noticed that A~ (k) (for r=1,2) are invariants
under the shift k—k+m. Thus the quasimomentum k
is constrained in one of the following regimes: (1) k
e[-m/2,mw/2) or 2) ke[-m,-m/2)U[m/2,). Here we
choose k to be in the first regime for A, (k) and in the
second regime for A.,(k). Figure 2 shows the typical energy
dispersions for a dimerized system with Q> 0. The case with
0 <0 can be obtained by a reflection under the shift.

B. Single-hole sector

In the p=1 sector, the hole breaks the two bonds con-
nected to it. For convenience, we assume that the hole is
located at the site L. The reduced Hamiltonian can be rewrit-
ten as

Huy=H 1~ Dp, (22)

where H{,; ) is defined by Eq. (13) but with the open
boundary conditions. The procedure for diagonalizing
H{y; ) is the same as for H g ;). The eigenwave function is
determined by Eq. (16) in a similar way. The only difference
is that now the M matrix is a (L—1) X (L—1) matrix, with
My =M, ;=0 and M, =ay(=D?).

Due to the open boundary condition, the Ansatz [Eq. (18)]
is no longer valid. Intuitively, a reflection wave (e~*%/) will be
induced at the boundary in addition to the incoming wave
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(e™™). Thus we suggest another Ansatz for the dimerized
open chain as follows:

(D) =A (2N —1,e7H),

(CDk)2j+l = A{;(eik(zj”) - foe_ik(zjﬂ))- (23)

With this Ansatz, we find that 7 and A (k) take the same form
as those defined in the p=0 case. The reflection coefficients,
t, and t,, are given by

oLk B (bye™™ + bre®)ellk

e e—lLk’ o (blelk + b2e—lk)e—1Lk :

(24)

Moreover, the quasimomentum k is now determined by the
following secular equation

2b,[b? + b3 + 2b b, cos 2k]sin Lk
= (ao - al)[bl Sin(L - 2)k + b2 Sin Lk]
X[(al - az) + W] (25)

The equation is symmetric under k— —k, thus we only need
to solve the complex or positive k’s. The solution can be
further simplified if b,=b, (or D,J,=D,J,) where 1,=t,.

C. Multihole sectors

The previous approach is extended to the subsystems or
sectors with more holes. The holes break the Ising couplings,
leading to a series of segments of the spin-1/2 TIM’s. For the
periodic chain, the number of these segments is equal to the
number of p holes (including the segment of zero length). If
the holes are located at (x;,x,,*,x,), then the correspond-
ing reduced Hamiltonian is given by Eq. (9), ie., H, )
=3 _H'(0,1,)-=F_ 1D, , with 1,=x,—x, —1 (where xo=x,
—L) being the length of the nth segment and

—2
H,(O’ln)z_ 2 ]+10] 1
J=X- 1+1
D;
2 D;o] 2 L (20)
2J _1+1 o1+l 2

Each segment Hamiltonian H'(0,! ) can be diagonalized
as H’(O,ln):EkA(k)(r]an—%) E*"‘l +1%, where k is the

/\
quasimomentum satisfying the secular equation [Eq. (25)]
(by replacing L by [,). Notice that associated with the fixed
length of the segment there are four different kinds of con-
figurations, depending on whether the two edge holes are

located at odd or even sites.

V. LOW ENERGY SPECTRA
A. Fermionic excitations in the nonhole sector

In the previous section, we show how to diagonalize the
reduced Hamiltonians of different sectors. In a given hole
sector, there are four branches of quasiparticle excitations,
given by Eq. (21). Obviously, the two negative branches
A_(k) (r=1,2) will be filled in the ground state of that sec-
tor.
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In the p=0 sector, the ground state is given by |i)
=Hkkr77i1!k7]i2,k,|0>, where nfqu (r=1,2) are the fermionic
quasiparticle operators in the branches A_.(k), k, and k' are
the allowed momenta for r=1,2, respectively. The ground-
state  energy is given by Eo(p:O,L)zéEkA_l(k)
+%EkrA_2(k,).

The low-energy excitations can be obtained by applying
operators 77;,(, or 7_,, on the ground state. The excitation
energy is given by A,(k") [=—A_,(k")]. When Q >0, the en-
ergy gap between the lowest excitation and the ground state
is given by

Ag=\T2—\T*- &, (27)

where 8.=\|D,D,=4J,J,|. If |D,|=|D,|=|D| and |J,|=|J,
=|J|, one has A0=2|J|||1T‘— 1| with N=2J/D, reproducing the
result of the uniform chain. In this case, the branches 1 and 2
connect smoothly. In the presence of dimerization, however,
the two branches will split and produce a dimerization gap

1
A= 5(\/1“2 B S ) P )

B. Single-hole excitation

The ground state of the p=1 sector has L-fold degeneracy
in the uniform chain, because the energy does not depend on
the position of the hole. But in the presence of dimerization
the degeneracy will be L/2-fold. While the momentum de-
pendence of the spectra can be determined as in the p=0
sector, the quasimomentum k must satisfy the secular equa-
tion associated with the open chain of length L—1.

In the lowest state of the p=1 sector, the bands with
negative energies are fully filled. The corresponding energy
is then given by Eo(1,L)=3[SA_(K)+Z A (k")]
—%max(Dl,Dz). The last term is contributed from the hole
which may locate at either even or odd sites.

According to theorem 2, the ground state of the original
Hamiltonian should be the one in the p=0 sector. So in ad-
dition to the fermionic excitations, inclusion of the p=1 sec-
tor (adding a hole to the system) will induce the hole exci-
tations. The minimal hole excitation gap is given by Agll)
=A,=Ey(1,L)-Ey0,L). The typical behavior of A, (as a
function of D,) is shown in Fig. 3 for fixed J,=10, D;=2.0,
and L=2000, with either periodic or open boundary condi-
tions.

In order to understand the difference in A, for the periodic
and open chains, we consider a special case where the chain
is uniform and at the critical point, i.e., D1=D,=D, J;=J,
=J, and N\=2J/D=1. In this simple case, the energy spec-
trum is given by A(k)=—|D|V1+\?+2\ cos k, and the
allowed quasiparticle momenta are k:z%T (m=
-L/2,...,L/2-1) for the period boundary condition, and k
=% (m=1,...,L) for the open boundary condition. Thus
for sufficiently large L we obtain A,=~0.136D and A,
~(0.318D for the open and periodic chains, respectively.
Their difference, €,=0.182D, does not change for larger L.
So it is the surface energy cost to turn into an open chain.

PHYSICAL REVIEW B 79, 214427 (2009)
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FIG. 3. The hole excitation gap A, as a function of D, for the
system with periodic (left panel) or open (right panel) boundary
conditions. Three curves corresponding to J,=0.5, 1.0, and 1.5 are
plotted and J;=10 and D;=2.0 are fixed.

C. Multihole excitations

It is straightforward to extend the above discussion to a
multihole system. Let us start with p=2. The eigenfunction
in the p=2 sector is a direct product of the wave functions
for the two p=1 segments, but with smaller lattice lengths
x—1 and L—x—1, respectively, where x=x,—x; is the dis-
tance between the two holes sited at x; and x,.

For the uniform chain, the lowest energy state of the p
=2 sector should correspond to the configuration where two
holes are close together, as in this case the total surface en-
ergy is minimized. So the lowest hole excitation gap in the
p=2 sector is given by A?'=E(2,L)-Ey(0,L). For p>2,
one can further show that the lowest state in the pth sector is
the configuration in which all holes are close to each other.
This is the hole condensation phase in one dimension. The
remaining spin chain has a length L—p. When p<<L and L
—o, the finite-size effect is negligible so one has Azp )
=~pA,.

D. Phase diagram

We now discuss how dimerization influences the phase
diagram. We have shown that the ground state still lies in the
p=0 sector in the presence of dimerization. However, dimer-
ization splits the bands and induces a gap at higher energies.
The quantum critical points extend to lines, which are deter-
mined by the gapless condition, i.e., Ay=0, or according to
Eq. (27),

D1D2= + 4.]1.,2. (29)

The influence of dimerization can be seen more clearly by
introducing (assuming J,J,>0)

D+D D,-D
R=—— Q=—_—"—=, (30)
2\"]1]2 2\”-]1.]2

where R describes the competition between D j and J 2 and )
is a measure of the dimerization strength. In the uniform
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FIG. 4. (Color online) Ground-state phase diagram of the S=1
QIM. The () axis and R axis describe the dimerization strength and
the competition parameter, see Eq. (30) in the main text. The dashed
area is the magnetically ordered phase which extends slightly for
small Q but splits into two parts for || >2.

chain limit, R=2/\ and =0. With increasing (), we have
the following three situations: (1) in the weak dimerization
regime,
+R,, with R,=\Q?+4. The ground state is magnetically or-
dered when |R|<R.. (2) In the strong dimerization regime,
|2 >2, there are two pairs of symmetric critical points,
*R., *R., with R, —\’Qz+4 Rz—\Q2 4. The mag-
netically ordered phase appears when R, ,<R<R, (3) when
Q=2 (R.,=0), there are three critical points which take
values +2\2 0, respectively. The ground state is magneti-
cally disordered when |R|>2\2 but ordered (either ferro-
magnetic or antiferromagnetic, depending on the signs of
J1.») when |R| <242. Note that the R=0 point corresponds to
an alternating (or staggered) array of single-ion aniso tropy
(D,-D,...,D,=D). It becomes critical when D= *2J,J,.
The R-() ground-state phase diagram is plotted in Fig. 4.
The magnetically ordered phase and paramagnetic-
disordered phase are separated by critical lines (red).

VI. THERMODYNAMIC PROPERTIES

In this section, we study the thermodynamic properties of
the S=1 QIM. As was shown previously, this model is ex-
actly solvable not only for the ground state, but also for all
excited states. However, exactly evaluating the thermody-
namic quantities is still a very hard task, particularly for
large system size and dimerization. Here we shall develop
the recursion method proposed in Ref. 9 in the evaluation of
the partition function as well as other thermodynamic quan-
tities for either uniform or dimerized chains.

A. Recursion method

Based on the HDS, the partition function Z(L) of the sys-
tem with lattice length L can be expressed as the sum of all
the partition functions of the subsystems, i.e.,

L
Z(L)= 2 Z(p,L), (31)
p=0

where Z(p,L) is the partition function of the pth sector, be-
cause for fixed p, there are many different hole configura-
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tions. So Z(p,L) can be further rewritten as a sum over all
possible hole configurations

Z(p,L) ={ > }Z(x,, ). (32)

For each hole configuration {x,,...,x,}, the correspond-
ing partition function of the open chain is given by (B
=1/kyT)

Zxy, ... x,) = Tr JAELH 0L)-UDS_D)] - (33)
where, H'(l,) is the Hamiltonian of the nth segment.

The partition functions of each segment can be regarded
as the building blocks of total partition of the original sys-
tem. These building blocks are denoted by z(/,), the partition
functions of the spin-1/2 TIM segments with length /,. Then,
in the uniform case, Z(L) can be expressed as Z(L)
:EézOZ{,n}z(ll)az(lz)a---az(l,,+1), where a=exp(BD/2) is
the partition function of a hole, z(1)=2 cosh(8D/2), and
z(0)=1. As the length of the allowed segment may vary, one
has the summation constraint 7%/, =L—p. If we denote

ZP(L-p)=z(l))z(L,)" - *z(l,41), then the total partition func-
tion can be rewritten as

Z(L) = Ea”Z (L-p), (34)

where, o is contributed from the hole’s.
To numerically evaluate the partition function, it is prac-
tically convenient to use the following recursion formula

1
ZP() = X 2()ZP V(1 - ), (35)

J=0

where, ZD(1)= 5,y and ZO(1)=z(l). By this way, we first
calculate the building block, z([,), and then by iterative use
of above relation evaluate the partition function of the S=1
system. We find that this method is particularly efficient for
the uniform chain, where the system size L could be as large
as L=10 000.

It is nontrivial to extend the above recursion method to
the spin chain in the presence of dimerization. Here there are
four kinds of blocks associated with the parity of the two
ends. Thus we can denote them by z,l,z(l,,), with 1 (=0, €)
indicating the left/right ends, respectively. The S=1/2 TIM
segments with odd or even end sites can be solved exactly.
The analytical expressions for Zryr, (1,) will be provided in a
separated supplementary material.”® In the following, we
present some numerical results obtained by the recursion
method while the system size is kept at L=2000. For sim-
plicity, we use the open boundary condition for the original
S=1 chain. The extension to the periodic boundary condition
is straightforward.

B. Uniform spin chain

Thermodynamics quantities can be calculated from the
partition function. In our model, an important physical quan-
tity is the thermal average of the hole number, defined by
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FIG. 5. (a) Temperature dependence of the hole concentration
N, and (b) the entropy S for a uniform spin chain with A=
-1,0.5,1,1.5, respectively.

L

> pa?ZP(L-p). (36)
p=0

1
M= 2w

Figure 5(a) shows the temperature dependence of N,, for
several N\. At low temperatures, N, increases rapidly with
increasing temperature for small and positive A. The prolif-
eration of the hole number at low temperatures is obviously
due to the smallness of the hole excitation gap. However, for
the negative A, say, A=—1, the hole excitation gap is rela-
tively larger, so N, increases much slowly with temperatures.

Another interesting physical quantity is the entropy S,
which we plot as a function of temperature for several dif-
ferent \ in Fig. 5(b). We find that the suppression of the
entropy S is stronger for larger A. The suppression is even
more pronounced for the negative N. These behaviors are
similar to the temperature dependence of the hole number
and are also due to the hole excitation gap.

We also find that the N, approaches about 1/3 in the high-
temperature limit for all N. Correspondingly, the entropy
saturates at the value In 3 in the high-temperature limit (not
fully shown in Fig. 5).

C. Dimerized spin chain

The recursion method, after some extensions discussed
previously, is also used to evaluate thermodynamic quantities
for a dimerized system. Figures 6 and 7(a) show the tempera-
ture dependence of the entropy S, the average hole concen-
tration N, and the specific heat C in the ordered (DD,
=J,J,), critical (DD,=4J,J,), and disordered phases
(D,D,=16JJ,), respectively. Here we fix J,=10, J,=1, and
D, =2, and choose several D, (=5, 20, and 80) in Figs. 6 and
7(a). Note that both the dimerization strength and competi-
tion parameter are tuned by varying D,. The general features
of the hole number and the entropy are similar to that in the
uniform case as the hole excitation gap plays the role at low
temperatures (note that when J,=10, J,=1, and D=2, A,
=7.450, 3.902, and 1.202 for D,=5, 20, and 80, respec-
tively).
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FIG. 6. (a) Temperature dependence of the hole concentration
N, and (b) the entropy S for a dimerized spin chain in three repre-
sentative cases: D;D,=J;J, (dashed line), 4J,J, (real line), and
16J,J, (dash-dotted line), respectively, where, J;=10, J,=1, and
D=2 are fixed.

In Fig. 7, the specific heat is plotted as a function of
temperature in several cases. We find that at low tempera-
tures the specific heat is peaked at the temperature scale near
the hole excitation gap. The peak behavior changes depend-
ing on the competition of the fermionic and hole excitations.
The influence of the dimerization on the specific heat can be
clearly seen at relatively higher temperatures, as the
dimerization-induced gap is much larger than the hole or
fermion excitation gaps. Figure 7(b) shows the specific heats
of the S=1 QIM system and its p=0 sector for the case J,
=10, J,=1, D;=2, D,=80. Note that the p=0 sector is

0.6

04 [i}

02 lifi
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024 30 45 0 2 4
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FIG. 7. (Color online) (a) The specific heat C for D{D,=J,J,
and D,=5 (blue-dashed line), D,D,=4J,J, and D,=20 (red-real
line), and DD,=16J,J, and D,=80 (dash-dotted line) with J,
=10, J,=1, and D=2, respectively; (b) The specific heat C (dash-
dotted line) and the corresponding specific heat C(p=0) for the p
=0 subsystem (green open circle) for D;D,=16J,J, and J,;=10,
Jo=1, D=2, and D,=80, respectively. (c) The specific heat C
(blue-real line) and C(p=0) (red-doted line) with J;=J,=1, D;=2,
and D,=7.
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FIG. 8. (Color online) The scaled free energy for the dimerized
systems in the quantum critical phase where D{D,=4J,J,. Two
typical situations are plotted: (J,=3 and D,=6) and (J,=10 and
D,=20) with small and large hole excitation gaps, respectively.
Other parameters are J,=1 and D;=2. As a comparison, the corre-
sponding S=1/2 TIM case is also plotted.

identical to the corresponding S=1/2 TIM. In this case
Ao(~4,) is very small, leading to a sharp peak in the S=1
QIM system. We also find a well-separated and relatively
round peak in the higher temperature regime where the en-
ergy scale is close to the dimerization gap A,(=40.025).

The competitions among the dimerization effect, the hole
excitations, and the fermion excitations can be seen more
clearly from Fig. 7(c), where J,=J,=1, D=2, and D,=7. In
this case, the three kinds of gaps are well separated, A,
<Ay<A, so that the specific heat exhibits three peaks. The
first one is a sharp peak around T~ A,,” other two peaks are
around T~ A, and T~ A, respectively. By contrast, the low-
temperature sharp peak disappears in the p=0 sector and
other two peaks still persist [see the red dotted line in Fig.
7(c)]. This is in agreement with the fact that no hole excita-
tion exists in the p=0 sector.

We also calculated the scaled free energy P (7) at the
critical point D;D,=4J,J, for the dimerized spin chain.
® (T) is defined by

2|,|[F(0) = F(T)]
- .

Q(7) = T

(37)

This quantity, which is identical to the specific-heat coeffi-
cient at low temperatures, was introduced in Ref. 30 in order
to show the temperature persistence of the quantum critical
scaling behavior in the S=1/2 TIM. The critical region,
where quantum critical fluctuations dominate this quantity,
should be a constant. It was shown that in the S=1/2 uni-
form TIM it deviates from the constant only when 7=J/2,
indicating a rather higher temperature scale below which the
quantum critical scaling behavior persists.>* In our recent
work,? we found that in the uniform S=1 QIM this behavior
is strongly suppressed by the hole excitations. Here we find
that the similar conclusion can be inferred in the presence of
dimerization. In Fig. 8, we plotted the results for two cases
(1) J]:3, ]2:1, D]:2, and D2:6, and (11) J1:10, ]2:1,
D=2, and D,=20. As a comparison, the corresponding re-
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sult for the dimerized S=1/2 TIM is also plotted. We find
that the quantum critical scaling behavior at T—0 (or J,/T
— oo in Fig. 8) persists approximately at finite 7=~ 0.5J, for
the dimerized S=1/2 TIM for case (ii) and at T=0.2J, for
case (i), respectively. This is because that the hole gap in
case (i) is much smaller than case (ii). Consequently, the hole
excitations play a more significant role in suppressing the
quantum critical scaling behavior in the former case. This
result is consistent with the conclusion in Ref. 9.

D. Hole condensations: The case with finite D,

Now we turn to the case with nonzero D,. It is straight-
forward to show that the D, term plays the role of chemical
potential for holes in the S=1 QIM.? More specifically, the
energy of a p-hole sector with finite D, is related to that with
D=0 by the following relationship [Eg’ )(0)=Ey(p,L)]

EY(D,) = EJ(0) + pD.. (38)

Thus, with finite D,, the fermion excitation spectra remain
unchanged, but the hole excitation gap becomes’!

Ay(D,) = A,(0) +D,. (39)

Therefore, the ground state depends strongly on the value
of D,. When D_>-A,(0), the hole excitation is positive and
the ground state is still in the p=0 sector. But when D_<
—A,(0), the hole excitation gap is negative. This indicates
that the p=0 sector is no longer the lowest energy state and
there are holes in the ground state. As a result, theorem 2 is
no longer valid in the present case. When L is sufficiently
large and p is relatively small, the lowest energy of the p
sector can be approximated by Egp)(O)zE(O)(O) +pA,(0) as
discussed in the previous section. Then, E )(Dz)zEg))(Dz)
+p[A,(0)+D_], so that we have

EX(D) < - =EMND) < EVD,). (40)

Thus, the order of the band-structure hierarchy is completely
overturned. In this case, the ground state is in the p=L sector
and all sites are occupied by holes.® This can be also seen
clearly from Fig. 9, where the temperature dependence of the
hole concentration N;, is shown. We find that in the zero-
temperature limit, N, is equal to one when D.=<-A,(0) or
zero when D,>-A,(0).

VII. SUMMARY

In this paper, we have studied a class of exactly solvable
S=1 QIMs with single-ion anisotropy. They exhibit a hierar-
chy of the band structure with both fermionic and hole exci-
tations. The hole excitation gap can be tuned by the longitu-
dinal crystal field D,. It becomes zero when D, is equal to
—A,(0). The ground state exhibits three distinct phases: the
magnetically ordered or disordered phases when D_>
—-A,(0) or the hole condensation phase when D,<-A,(0).
The transition to the hole condensation phase is of the first
order.

We have shown that dimerization does not destroy the
exact solvability of this model. To our knowledge, this is the
first example in dimerized S=1 quantum spin systems where
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FIG. 9. (Color online) Temperature dependence of the hole con-
centration N, for D.=0 or D_=—A,(0). Other parameters are J;
= 10, J2= 1, and Dl =2.

all the eigenstates as well as the wave functions and the
eigenenergies can be solved exactly. The hole excitations en-
hance the thermodynamic fluctuations as evidenced in the
specific heat which shows a sharp peak in the low-
temperature region where the hole excitations proliferate.
This strongly reduces the characteristic temperature below
which the quantum criticality persists. All these results are
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robust against the dimerization. However, dimerization de-
forms the phase diagram and affects the high-energy behav-
ior.

We have developed a recursion method to sum over all
hole configurations efficiently. This provides a powerful ap-
proach for evaluating rigorously all thermodynamic quanti-
ties as well as static and dynamic correlation functions of the
QIMs in the thermodynamic limit. The detailed derivations
for these quantities in the presence of dimerization will be
provided as a supplementary material.”® The recursion
method holds not just for the model studied here. It can be
easily extended and applied in other physical systems whose
Hamiltonian can be written as a sum of independent spin
segments separated by nonmagnetic impurities such as Pd-
doped or Zn-doped quasi-one-dimensional antiferromagnets
Sr,(Cu,_,Pd,)O; or Cu,_,Zn GeO;.3>33
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