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We calculate thermodynamical properties of the Hofstadter model using a recently developed quantum transfer
matrix method. We find intrinsic oscillation features in specific heat that manifest the fractal structure of the Hofstadter
butterfly. We also propose experimental approaches which use specific heat as an access to detect the Hofstadter
butterfly.

KEYWORDS: Hofstadter model, quantum transfer matrix method, specific heat oscillation

1. Introduction

The interplay between crystalline potential and magnetic
field on a two-dimensional electronic gas remains a
nontrivial problem for decades.1) This issue provides a stage
on which purely mathematical concepts, i.e., the irrationality
of a real number, interrupts our intuition of physical reality.
Hofstadter2) studied the energy spectrum of the tight-binding
limit of this problem, namely, the Hofstadter model. He
proposed a fractal topology for the spectrum (Hofstadter
butterfly), which reconciled the paradox raised by the
irrationality. The experimental verification of the Hofstadter
butterfly is challenging but some hints of the fractal structure
have been observed in microwave measurements,3,4) Hall
conductivity5) and magnetic transport measurements6) in
analogous systems. The effects from the disorder and
anisotropy are discussed in ref. 7.

In this paper, we adopt a recently developed quantum
transfer matrix method8) to study thermodynamic properties
of the Hofstadter model. We focus on the behavior of
internal energy and specific heat as functions of magnetic
field. As far as we know, this is the first report that by
theoretical method, the fractal structure in the Hofstadter
butterfly can be studied by computing the specific heat in a
magnetic field of a generic value. We also briefly discuss the
feasibility of experimental observations of these features.

In a previous publication,9) we had used the quantum
transfer matrix method to study the magnetic properties of
Hofstadter model. The advantage of this method lies in that
it directly computes the partition function of the model for
arbitrary �, where � is the magnetic flux through a unit cell,
then the thermodynamic properties can be studied steadily.
Conventional theoretical methods, such as Bethe ansatz10,11)

and exact diagonalization,12,13) are mostly applied to
� ¼ p=q cases, where p and q are mutually prime numbers,
and q is relatively small. Although detailed information of
energy spectrum and wavefunction can be obtained with
these methods, only limited cases of � can be studied and
most discussion was focused on ground state properties.
Besides, at ground states, due to the fractality of the
Hofstadter butterfly, the smoothness of physical quantities as
functions of magnetic field, such as total energy, static

magnetic susceptibility are significantly diminished. How-
ever, within the quantum transfer matrix formulation, the
effect of finite temperature is embodied in the partition
function at the beginning, and the singularities due to the
fine fractality will be smeared out and the smoothness of
physical quantities can be recovered, which makes the
comparison to experimental results more straightforward.

2. Model and Method

Hofstadter model describes the dynamics of two-dimen-
sional tight binding electrons in a uniform magnetic field.2)

By applying Landau gauge, i.e., A ¼ Hð0; x; 0Þ, the
Hamiltonian is explicitly translationally invariant along the
y-direction. Fourier transformation along the y-axis will
then decouple the two-dimensional model H into a series
summation of one-dimensional Hamiltonian Hk:

H ¼
X

k

Hk; ð1Þ

Hk ¼
X

x

½tcyk;xþ1ck;x þ tcyk;xck;xþ1

þ 2t cosð2�x�� kÞcyk;xck;x�; ð2Þ
where k ¼ 2�n=Ny (n ¼ 0; 1; . . . ; Ny � 1) are the quasimo-
menta and Ny is the lattice dimension along y direction. x is
the lattice coordinate of electrons along the x-axis. � is the
magnetic flux through each plaquette, with magnetic flux
quanta hc=e as unit.

Hk does not generally have translational invariance along
the x-axis. But for rational � ¼ p=q, periodicity can be
recovered by combining every q cells to form a superlattice,
and then the problem can be solved by diagonalizing a q� q
matrix for each quasimomentum of the superlattice. Thus the
full energy spectrum and thermodynamic properties can be
steadily obtained, yet apparently, only up to relatively small
q. To study cases with a generic �, the quantum transfer
matrix method starts from the partition function Z ¼
Tr½expð��HÞ�, which can be viewed as an trace of the
evolution operator along the imaginary time. Since the trace
naturally imposes a periodical boundary condition, a Fourier
transformation can be well defined along the imaginary time
(the inverse temperature), which is the key point leading us
to the transfer matrix representation and to significantly
simplify the calculation in refs. 8 and 9. Given k, the
partition function of Hk is defined by�E-mail: liping0710@gmail.com
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Zk ¼ Tr expð��HkÞ; ð3Þ
where � ¼ 1=kBT . The partition function of the whole
system is simply a product of all Zks. By making use of the
translational invariance along the imaginary time, Zk can be
expressed as a product of Nx 2� 2 matrices. After multi-
plying different k components, we can obtain the partition
function of the system, from which one can calculate the free
energy by F ¼ �ð1=�Þ lnZ, and other thermodynamic
quantities such as magnetic susceptibility and specific heat.

In ref. 9, the authors have discussed the effect of lattice
size on the numerical results. Accordingly, we choose here
Nx ¼ 50000 and Ny ¼ 100 to ensure the numerical accuracy
as well as computational efficiency for the temperature range
in this paper. For simplicity, we only consider the half-filling
case, which corresponds to a particle-hole symmetry and
automatically sets chemical potential � to 0. The chemical
potential oscillation with the flux quanta and the related
impact on magnetization oscillation were discussed in
ref. 14.

3. Results and Discussion

First, we calculate the average internal energy as a
function of � at T ¼ 0:01.

As shown in Fig. 1, at the local minima of the internal
energy, the electron count � (= 0.5 for half-filling) and �
satisfy the relation in eq. (4), which was given ref. 12. These
minima are cusp-like.

� ¼ M þ N�; M;N 2 Z: ð4Þ
The global minimum in Fig. 1 is consistent with the
conclusion that there is an global minimum of the average
energy13,15) when � ¼ � ¼ 1=2, that is, each electron carries
one flux quanta. We have marked the values of � (the red
number on the top axis) located at distinguishable minima
and the corresponding integers M and N in Fig. 1. At zero
temperature, the average energy will not be smooth almost
everywhere because there are infinite number of rational �s
that satisfy eq. (4). But here the temperature will erase minor
singularities and only keep the significant ones.

Then we compute the specific heat from the first order
derivative of the internal energy with respect to the
temperature. Figure 2 shows the specific heat C as a
function of temperature T for some special �s. The chosen
three �s belong to the pure cases in Hofstadter’s proposal,2)

i.e., � ¼ 1=N, or 1� 1=N when N � 2. Under magnetic
field of these values, the single Bloch band in zero magnetic
field is split into N subbands. If N is odd, the central
subband has a van-Hove singularity at the center point of the
energy spectrum (E ¼ 0). If N is even, the density of states
(DOS) goes to zero at E ¼ 0.12) When the temperature is so
high that the thermal fluctuations are comparable to the
energy difference between the lowest and the highest
subband, the subbands will not be able to manifest their
internal fine structures from specific heat. This can be
observed from the high temperature tail in Fig. 2.

The difference in the specific heat for various values of
� will emerge with the decreasing temperature. First, at
low temperature, the behavior of specific heat can tell the
singularity of DOS at the energy spectrum center point [the
Fermi surface (FS) in our half-filling case]. In the regime

near zero temperature, the � ¼ 1=2 and 1/4 curves are
decreasing faster than that of � ¼ 1=3. A closer observation
indicates that the specific heat coefficient C=T in the case
of � ¼ 1=2 and 1/4 decrease linear-like, while � ¼ 1=3
diverges, with the temperature decreasing. This is because
of the different behavior of DOS at the spectrum center
point.12) For � ¼ 1=2 and 1/4, the original single band in
zero field splits up into 2 and 4 bands. But the centermost
two bands are not completely separated by a gap, rather they
‘‘kiss’’ at the center point, where DOS of both bands linearly
goes to zero. For � ¼ 1=3, the Bloch band splits into three
bands, and DOS of the center band is singular at the center
point, which corresponds to the divergence of C=T when
approaching zero temperature.

In the intermediate temperature regime, the specific heat
tells the information about gaps and redistribution of DOS
along the energy spectrum. In Fig. 2, the curves of � ¼
1=3; 1=4 show some similar minor hump structures, which
is different from the case of � ¼ 1=2. For � ¼ 1=2, two
subbands touch at FS, where DOS is zero, and there is no
finite gap in the energy spectrum. Thus there is only one
major hump in specific heat curve. For both � ¼ 1=3 and
1/4, there is a finite gap lying above FS,12) which separates
the subband on (� ¼ 1=3) or near (� ¼ 1=4) FS from the
higher band, and gives the extra minor hump in the specific
heat curve.

Fig. 1. (Color online) The internal energy as a function of � for the

Hofstadter model at half filling. T ¼ 0:01. Some values of � (the red number

above the top axis) and the integers ðM;NÞ corresponding to local minima

are marked.

Fig. 2. (Color online) Temperature dependence of the specific heat C at

half filling for � ¼ 1=2; 1=3; 1=4.
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Figure 3(a) shows the specific heat coefficient (C=T ) as a
function of magnetic field at different temperatures, T ¼ 0:1
and 0.01. The horizontal axis is chosen as 1=�, so that the
conventional de Haas–van Alphen (dHvA)-like oscillations
are shown distinctly in the figure. The period �ð1=�Þ of this
oscillation is about 2 in both cases, which is consistent with
that obtained from textbook formula,16) �ð1=�Þ ¼ 4�2=SF,
where SF is the Fermi volume. At half filling, SF ¼ 2�2, thus
�ð1=�Þ ¼ 2 in Fig. 3(a).

However, a more important observation is that subtle
oscillations emerge within the dHvA-type period with
decreasing temperature and strong field. The specific heat
at T ¼ 0:1 displays a clean periodic oscillation on the
weaker field side (large 1=�), while this periodicity is
disturbed in the stronger field regime (small 1=�). This
becomes more explicit with lower temperature T ¼ 0:01. In
the first three periods, very sharp peaks and dips show up,
and they make a peculiar type of oscillations within the
period. Even for weaker field regime, some sharp structures
are still observable. It is worthwhile to note that the locations
of the maximums (or minimums) for the cases in T ¼ 0:1
and 0.01 do not match, which is just the representation of the
energy resolution scale. The higher the energy resolution,
the more gaps and the finer structure can be detected. Here,
the lower temperature is the finer measurement for the
fractal energy spectrum. Those gaps distinguished by the
temperature T ¼ 0:01 are beyond the detection regime of
T ¼ 0:1. As a consequence, those minimums shown in the
case of T ¼ 0:01 become the maximums due to the average
on the larger energy intervals in the case of T ¼ 0:1.

For the purpose of comparison, Fig. 3(b) shows the
magnetization oscillation with respect to the magnetic field.
Similar to the specific heat, the main envelope of oscillation

is the conventional dHvA oscillation. Besides, subtle
structures emerge within the dHvA period.9) By comparing
the results for magnetization and specific heat, we find that
the specific heat oscillations are more distinct and drastic.

To explore the information about the fractal structure of
Hofstadter butterfly from specific heat, we zoom in the first
period in Fig. 3 and then have Fig. 4 for low temperature
specific heat C and magnetic susceptibility �. The numerical
values of the specific heat are enlarged to 6000 times of the
original values for a clear comparison. Here � is chosen to
be the horizontal axis. The consistency between C and � is
obvious if we compare the positions of local maxima and
minima of both quantities. In Fig. 4 some fractional values
of �s are marked where they are close to the local maxima
and minima. Applying Hofstadter’s proposal of constructing
the butterfly,2) we can extract the structure of energy
spectrum at these �s and understand why the extrema of C
and � are close to them. With Hofstadter’s proposal,
each fractional � can be decomposed to a set of more
‘‘fundamental’’ fractions, or, ‘‘local variable’’ as in ref. 2,
which then directly displays the splitting of subbands in the
energy spectrum. For example, for � ¼ 4=13, the center
local variable is 4/5, which means there is a cluster of
5 subbands centered at FS. Consequently, a van-Hove
singularity of DOS shows up at FS and causes the local
maximum in C and the strong paramagnetism (local
maximum in �),9) while for � ¼ 3=8, the center local
variable is 1/2, thus there are two subbands lying above and
below FS with a zero DOS at FS and consequently in Fig. 4,
C shows a small value (close to 0) around � ¼ 3=8 and � is
strongly diamagnetic around � ¼ 3=8.

Therefore, by decreasing the temperature, fractal struc-
tures of the Hofstadter butterfly manifest themselves by
producing peculiar oscillatory features within conventional
dHvA period. This emergence along with decreasing
temperature is due to the fact that temperature provides the
only energy scale that sets up the resolution of the spectrum.
Temperature erases minor bands and gaps that are smaller
than the scale of temperature and restores the smoothness of
physical quantities. But fractal structures with an energy
scale larger than the temperature survive, and are able to

Fig. 3. (Color online) (a) The specific heat coefficient C=T as a function

of 1=�. Two different temperatures T ¼ 0:01, 0.1 are compared. (b) Mag-

netization at T ¼ 0:01 as a function of 1=�.

Fig. 4. (Color online) Specific heat coefficient (black line) and magnetic

susceptibility (red line) for the Hofstadter model at half-filling. The

numerical values of specific heat are 6000 times larger than the original ones

for comparison. The values of �s marked corresponds to some local maxima

and minima in both specific heat and magnetic susceptibility.
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manifest themselves by displaying smoothened singula-
rities in thermodynamic quantities. Thus the subtler fractal
structures of Hofstadter butterfly can be probed by the
measurement of the specific heat at lower temperatures.

Hall conductance oscillation5,17,18) have opened the
detection window for the special band structure. Here, from
the perspective of measurement for the thermodynamic
quantity, we propose to adopt the superconducting thin films
(for example the element Nb) with periodic arrays of pinning
sites19) to realize this temperature-dependent emergence of
fractal structures in specific heat. The artificial pinning
centers hold great potential. Just below the onset temperature
of superconducting transition, the electrons possess long
mean free path. When the interval between adjacent sites
comes to the order of 100 nm, the experimentally accessible
steady fields can enter the interesting regime of �. The
resulting effective lattice subjected to perpendicular mag-
netic field is probably able to show the fractal properties of
the Hofstadter model. In addition, the purity requirement of
the sample is relaxed when considering the specific heat
measurement.

4. Conclusion

In summary, adopting the quantum transfer matrix
method, we compute the internal energy and specific heat
of the Hofstadter model, and for the first time we study the
oscillation of the specific heat with varying magnetic field as
a signature of fractal structure of the Hofstadter butterfly. In
low field regime, the oscillation period of specific heat is
consistent with the conventional dHvA oscillation. When
the temperature is decreased, sharp peaks and dips emerge
in addition to the dHvA-type background. These peculiar
oscillatory behaviors are direct indications of DOS in the
fractal energy spectrum. We also suggest the possibility of

making use of superconducting films to detect this fractal
structure by measuring the specific heat.
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