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We demonstrate that current experiments using cold bosonic atoms trapped in one-dimensional
optical lattices and designed to measure the second-order Rényi entanglement entropy S2, can be
used to verify detailed predictions of conformal field theory (CFT) and estimate the central charge
c. We discuss the adiabatic preparation of the ground state at half-filling where we expect a CFT
with c = 1. This can be accomplished with a very small hoping parameter J , in contrast to
existing studies with density one where a much larger J is needed. We provide two complementary
methods to estimate and subtract the classical entropy generated by the experimental preparation
and imaging processes. We compare numerical calculations for the classical O(2) model with a
chemical potential on a 1+1 dimensional lattice, and the quantum Bose-Hubbard Hamiltonian
implemented in the experiments. S2 is very similar for the two models and follows closely the
Calabrese-Cardy scaling, (c/8) ln(Ns), for Ns sites with open boundary conditions, provided that
the large subleading corrections are taken into account.

PACS numbers: 05.10.Cc, 11.15.Ha, 11.25.Hf, 37.10.Jk, 67.85.Hj, 75.10.Hk

The concept of universality provides a unified approach
to the critical behavior of lattice models studied in con-
densed matter, lattice gauge theory (LGT) and experi-
mentally accessible systems of cold atoms trapped in op-
tical lattices. Conformal symmetry [1, 2] offers many
interesting examples of universal behavior that can be
observed for lattice models in two [3–5], three [6], and
four [7, 8] dimensions. In these examples, the conformal
symmetry is explicitly broken by the lattice regulariza-
tion and only emerges in the continuum and infinite vol-
ume limits. Identifying the underlying conformal symme-
try through well-understood symmetry breaking patterns
in numerical or experimental simulations involving finite
lattices is an important tool to explore new universality
classes. The entanglement entropy, which measures the
correlations between degrees of freedom in different re-
gions of a system, is an important tool [9] to address this
question.

For a conformal field theory (CFT) in one space and
one time (1+1) dimension, the ground state entangle-
ment entropy increases logarithmically with the spatial
volume of the system and its subsystems [9–14]. Using
basic CFT results, Calabrese and Cardy [11] established
that the coefficient of proportionality is in general the
central charge divided by an integer depending on the
boundary conditions (CC scaling). The central charge,
denoted c, is of primordial importance in CFT. It plays
a crucial role in the construction of the unitary represen-
tations of the conformal algebra, characterizes the uni-
versality class and is present in a variety of physical ob-
servables [2, 11].

In view of the rich collection of interesting CFTs in 1+1
dimensions, it would be highly desirable to study their
universality classes using quantum simulations. It has

been proposed to use a quantum gas microscope to study
the second-order Rényi entropy S2 of one-dimensional
fermionic Hubbard chains [15, 16] at half(quarter)-filling
which seem consistent with c = 1(2). Recently, manip-
ulations of small one-dimensional chains of cold bosonic
87Rb atoms trapped in optical lattices have allowed ex-
perimental measurements of S2 [17, 18] using a beam
splitter method [19, 20]. In these experiments, the super-
fluid (SF) phase, where S2 is significant and we expect
a CFT behavior, is reached by increasing the hopping
parameter J to large values in a one-dimensional “tube”
with one atom per site.

In this Letter, we consider instead the case where the
tubes are close to half-filling [21] and where a SF phase
with significant values for S2 can be reached at small
J . Using procedures available in existing experimental
setups [17, 18], we describe the adiabatic preparation of
the ground state. Experimental measurements have been
performed for small chains of four [17] and six [18] atoms
and only slightly larger sizes are expected to be within
experimental reach in the near future [22]. As the CC
scaling only dominates for large systems, the subleading
corrections are very important. These corrections are
restricted by CFT and allow us to estimate the central
charge from values of S2 obtained either from numerical
or experimental data.

We focus on the universality class associated with the
classical O(2) model where we expect c = 1. This is an
extension of the Ising model where the spin is allowed
to move on a circle, making an angle θ with respect to
a direction of reference. This model has important com-
mon features with models studied in LGT. Despite being
called classical, we can take the time continuum limit
and identify a quantum Hamiltonian [23–26] for which
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the notion of entanglement is perfectly meaningful [27].
A detailed analysis of numerical results [28], shows that
unlike the von Neumann entanglement entropy with pe-
riodic boundary conditions (PBC), where the CC scaling
is obvious at small volume, S2 with open boundary con-
ditions (OBC) has large subleading corrections. We dis-
cuss methods to eliminate finite temperature effects due
to the experimental preparation and manipulation of the
tubes which can be compared with results for fermionic
systems[15, 16].

Our effort is directly related to recent attempts [29–
31] to develop quantum simulators for models studied
in LGT where one needs to connect measurements in
cold atom systems described by quantum Hamiltonians
evolving in real time to classical theories that are typi-
cally studied in LGT. The long-term goal is to study real
time evolution and deal with sign problems that are not
amenable with conventional classical computation. In
LGT, space and Euclidean time are treated on the same
footing, a remnant of the Lorentz invariance expected in
the continuum limit. For these reasons, we start with the
classical O(2) model in 1+1 dimensions described by the
action

S = −βτ
∑
(x,t)

cos(θ(x,t+1) − θ(x,t) − iµ)

−βs
∑
(x,t)

cos(θ(x+1,t) − θ(x,t)) (1)

on a Ns × Nτ rectangular space-time lattice with sites
labeled (x, t). The time continuum limit can be achieved
by increasing βτ while keeping constant the product
βsβτ ≡ 2J/U , and µβτ ≡ µ̃/U tuned in order to keep the
desired particle density, denoted λ hereafter. With this
procedure, Eq. (1) defines a rotor Hamiltonian [23, 24]:

Ĥ =
U

2

∑
x

L̂2
x − µ̃

∑
x

L̂x − 2J
∑
〈xy〉

cos(θ̂x − θ̂y) , (2)

with [L̂x, e
iθ̂y ] = δxyeiθ̂y . These commutation relations

can be approximated with finite integer spin [27]. In the
following, we use the spin-1 approximation when λ < 1.
The only exception is Fig. 1, where we have λ = 1.5 in
the upper part and the spin-2 approximation has been
used. Note that at U � J and half-filling (λ = 1/2 and
µ sufficiently large, see below), we have approximately a
spin-1/2 XX model which is integrable and has a central
charge c = 1 [9, 10].

For the purposes described above, quantum simulators
involving two kinds of bosonic atoms have been proposed
for the O(2) model [27, 32]. This doubling is required to
take care of the anti-particles (negative Fourier modes
in the tensor renormalization group (TRG) formulation
[27, 33, 34] ). However, if µ̃ is large enough these nega-
tive modes can be omitted and we can rely on simulators
with only one kind of boson, which is easier experimen-
tally. In the following, we focus on the region of the

phase diagram where µ̃ ' U/2 � J and where there is
an approximate connection with the Bose-Hubbard (BH)
model with only one type of particle. In this regime, the
particle occupancies 0 and 1 dominate for BH (hard core
limit) and the correspondence with the XX model ap-
proximation mentioned above is clear. Replacing L̂x by

the occupation number nx and eiθ̂x by the creation op-
erator a†x in Eq. (2), we obtain the BH Hamiltonian:

H =
U

2

∑
x

nx(nx − 1)− J
∑
x

(a†xax+1 + h.c.). (3)

This approximate correspondence [25, 26] is supported
by numerical results discussed below.

Note that in experimental situations, the number of
particles is fixed and there is no chemical potential to
be tuned. On the other hand, in numerical calculations,
it is possible to determine the value of µ̃ for which the
0-particle ground state in the Mott phase crosses the 1-
particle ground state. At small J , a first order calculation
shows that this occurs for µ̃/U = 1/2−2J/U . Replacing
particles by holes, the same calculation shows that the
transition from the SF phase to the particle density λ = 1
Mott phase occurs at µ̃/U = 1/2+2J/U . These two lines
are visible near the tip of the SF phase in Fig. 1 for small
J/U . For larger J/U , our results agree with Refs. [35, 36]
for BH.
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FIG. 1. S2 for O(2) with Ns = 16 and OBC. Laid over top
are the BH boundaries between particle number sectors.

We now discuss in parallel the calculation of the en-
tanglement entropy for the O(2) model in the time con-
tinuum limit and the BH model. In order to connect
with recent cold atom experiments [17, 18], we focus the
discussion on the second-order Rényi entropy for the sub-
system A

S2(A) ≡ − ln(Tr(ρ2A)) , (4)
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with OBC. The reduced density matrix ρ̂A is obtained by
tracing over the complement of A. CFT provides severe
restrictions on the dependence of S2 on the size of the sys-
tem and the subsystem [11–14, 37]. A detailed study [28]
of fits of accurate numerical results with various subsets
of the available subsystems shows that using subsystems
of size Ns/2 allows to obtain estimates of c very close to
the expected value 1, while, for Ns ≤ 16, using larger
subsets increase the difference between numerical results
and CFT predictions.

In the following, we restrict ourselves to systems with
an even number of sites and a subsystem A of size Ns/2.
Fig. 1 displays S2 for Ns = 16 as a function of J/U
and the chemical potential. The lower (upper) light part
is the Mott phase with density λ = 0 (1), and the 15
plateaus corresponding to the particle number sectors 1,
2, . . . , Ns − 1 in the SF phase in between are visible.
In the following, we focus on the half-filling region which
is more or less horizontal in the SF region and can be
reached numerically at arbitrarily small J/U .

Since existing experiments only allow a very limited
number of sites, it is crucial to take into account sub-
leading corrections. Using existing results [11–14, 37] for
subsystems of size Ns/2, we get

S2(Ns) = K +A ln(Ns) +
B cos

(
πNs

2

)
(Ns)p

+
D

ln2(Ns)
, (5)

where K, A, p, B, and D are fitting parameters. For
OBC, the CC scaling gives A = c/8. In order to verify
this prediction, we have calculated S2 at half-filling for
J/U = 0.1 for the two models considered using the Den-
sity Matrix Renormalization Group (DMRG) method
[38, 39] using the ITensor C++ library [40]. For the
O(2) model, the results were cross-checked [28] with TRG
methods [27, 33, 34].

If we use the numerical data for Ns up to 64, we obtain
A = 0.1263 for O(2) and 0.1278 for BH which is close
to the CC prediction 0.125 for c = 1. The difference
between the two models can be reduced significantly by
decreasing J/U , which also brings A closer to 0.125 [28].
In order to test the predictive ability of the fit for smaller
spatial sizes we have reduced the maximal value Nmax

s

of Ns from 64 to smaller values, down to 12. The results
for S2 and A are shown in Fig. 2 which suggests that
the estimates converge slowly to the CFT value as Nmax

s

increases.
We now proceed to explain the proposed experimental

setup. We consider an optical lattice experiment with
single-particle resolved readout and local manipulation
of the optical potential, similar to the recent experiments
in Ref. [17]. In the experiment, two copies of the one-
dimensional many-body state of interest are prepared in
adjacent rows of an optical lattice, and global and lo-
cal Rényi entropies can be measured by a beamsplitter
operation implemented via a controlled tunneling oper-
ation between the two copies (Fig. 3a). The parity of
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FIG. 2. (top) S2 at half-filling with OBC for O(2) and BH
with J/U = 0.1. The solid lines are the fits for Bose-Hubbard
and O(2). (bottom) Values of A as a function of the maximal
value of Ns used in the fit, the band represents a positive
departure of 5 percent from the expected value 0.125.

the atom number in one copy after the beamsplitter op-
eration gives access to the quantum mechanical purity
[20].

Bose-Hubbard systems with tunable parameters U and
J and well-defined particle number are realized in current
experiments with one particle per site. Fig. 3b shows a
proposed scheme to achieve half-filling at J/U ≈ 0.1: Np
bosons are initialized in the Mott regime J � U , as in
current experiments. A superimposed harmonic confine-
ment as well as two sharp, confining walls separated by
Ns sites ensure that the system remains in its ground
state as the optical lattice depth is adiabatically reduced
to achieve the desired J/U . The harmonic confinement
is then removed to realize a homogeneous system with
hard wall boundary conditions at half-filling. For system
sizes considered here, this scheme should allow adiabatic
preparation of the ground state with available experi-
mental tools. Alternatively, techniques based on optical
superlattices may be able to prepare lattice ground states
at half-filling[41].

Assuming that we can prepare twin tubes with half-
filling in their ground state, the measurement of S2 pro-
ceeds exactly as in Ref. [17]. After the beamsplitter
operation, we select one copy of the twin tubes and mea-
sure the number of particles modulo 2 at each site x of
this copy, denoted ncopyx , and then use the result [20]:

exp(−S2) = Tr(ρ2A) = 〈(−1)
∑

x∈A ncopy
x 〉 . (6)

The probability for parity (−1)nx = ±1 is (1 ±
exp(−S2))/2. It is clear that as S2 increases, more can-
cellations occur and one needs on the order of exp(2S2)
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copy 2
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III. Parity readout

II. Interference 

a) b)
Preparation sequence
initialization

homogeneous system

reduce lattice
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FIG. 3. Measuring entanglement entropy in optical lattices.
a) Two copies of a quantum state |Ψ〉 interfere under a beam-
splitter operation, and site-resolved number measurements re-
veal the local parity P̂ and entanglement entropy. b) Pro-
posed state preparation for Bose-Hubbard systems at half-
filling, here for 4 atoms on 8 sites. Particles indicated by
wavefunctions (blue online) are initialized in a deep optical
lattice, where the local environment can be shaped via har-
monic confinement and sharp features projected with a spatial
light modulator. As the lattice depth is reduced, the particles
delocalize but are confined by repulsive walls.

measurements to overcome the fluctuations. From Fig.
2, and assuming Ns to be less than 16 (i. e., less than
8 particles at half-filling), the maximal measured S2 is
less than 1.1. For N independent measurements, we find
that the statistical error is

σS2
=
√

(e2S2 − 1)/N . (7)

For the maximal value S2 = 1.1, it takes about 800 mea-
surements to reach σS2

' 0.1. Due to the logarithmic
growth of S2, the number of measurements only needs to

increase like N
1/4
s to maintain a desired accuracy, which

is not a prohibitive growth.
In addition to the statistical errors, one needs to take

into account that finite temperature as well as prepara-
tion and manipulation errors contribute a classical en-
tropy Sclass.. Assuming that this classical entropy is lin-
ear in the number of particles in the system, it can be
removed by making use of an approximate particle-hole
symmetry: near half-filling, S2(Ns) of the ground state is
in good approximation symmetric in the particle number
about Np = Ns/2. By measuring Sexp.2 (Ns) for a range of
particle numbers in the vicinity of Ns/2, the excess clas-
sical entropy per particle in the experiment can be deter-
mined. Subtracting this estimate of the classical entropy
from the experimentally measured Sexp.2 gives a corrected
estimate of the ground state entanglement entropy Scorr.2 ,
which we compare to CFT via Eq. (5). For the system
sizes considered here, deviations from an exact particle-
hole symmetry are small and exhibit a regular behavior
at zero and finite temperature [42]. Understanding and

fitting these effects is important to get estimates of Scorr.2

with errors less than 0.02 [43].
In order to give an idea of possible experimental out-

comes, we have numerically studied the sensitivity of the
fit results of Eq. (5) to statistical errors in the measured
values of S2. By repeatedly fitting synthetically gener-
ated data (SGD) with Gaussian noise on S2 of magnitude
σS2 as illustrated in Fig. 4 (left), we find that it trans-
lates into errors of the fit approximately as σA = 3.2σS2

for a global fit of the central charge involving data up to
Ns = 16. To reach a statistical uncertainty in A compa-
rable to systematic errors of the order 0.02, the statistical
error on σS2 has to be on the order of 0.005.

Alternatively, we can try to fit Sclass.. For this pur-
pose, we have considered the finite temperature (T ) ef-
fects for T = 0.2J and 0.4J in Fig. 4 (left). Remarkably,
these effects can be fitted by adding only one term linear
in Ns. If Sclass. generated during the experiment follows
this linear behavior, it may be used to determine some
effective temperature.
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0.3

0.5

0.7

0.9

1.1

1.3

1.5

S
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DMRG T=0.4J

SGD T=0
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`
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DMRG T=0.2J

DMRG T=0.4J

SGD T=0

FIG. 4. S2 at half-filling for BH with J/U = 0.1 (triangles,
orange online) and SGD with random Gaussian fluctuations
with σS2 = 0.02 (circles, blue online). (left): vs. ln(Ns) for a
subsystem of size Ns/2 with the solid line corresponding to a
fit of the SGD from Eq. (5). (right): vs. the subsystem size
` for Ns = 8; the solid line corresponds to a fit of the SGD
using the formulas of Ref. [44]. Same quantities for T = 0.2J
(squares, red online) and T = 0.4J (diamonds, cyan online).

So far we have only used the values of S2 corresponding
to a subsystem of size Ns/2. CFT also provides predic-
tion for arbitrary subsystem sizes ` with 1 ≤ ` ≤ Ns − 1.
Typically, one needs to replace ` = Ns/2 by the chord
distance. Precise formulas are given in Ref . [44]. The
large oscillations when ` is changed for Ns = 8 are shown
in Fig. 4 (right). Importantly, the experimental measure-
ments of the parities at each site shown in Eq. (6) allow
us to calculate S2 for all possible subsystems without
extra measurements. The possibility of using these addi-
tional (but statistically correlated) results to reduce the
overall statistical error of the estimates is under study.
We can either subtract Sclass. from Sexp.2 as discussed
above or instead, use a fit with a term linear in ` as in
Fig. S2 of Ref. [18]. Fig. 4 (right) shows that finite-T
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effects can be fitted with a single additional term linear
in `. Estimates of c from fixed Ns fits in other models
have up to 20 percent errors [28, 45]. Knowing S2 for
all the subsystems also allows us to calculate the mu-
tual information [15, 17], where the Sclass. contributions
cancel.

In conclusion, we have shown that the simple BH
model which is implemented in current experimental
measurements of S2 can be used as a quantum simulator
for the classical O(2) model with a chemical potential.
We showed that the region of the phase diagram near
half-filling and small J/U offers rich possibilities that
complement the existing experiments at unity-filling and
larger J/U [17, 18]. The changes in S2 due to the size
of the system or the subsystem show strong periodic os-
cillations which are of the same order of magnitude as
the average S2 for Ns ≤ 16. We provided complemen-
tary methods to estimate and subtract Sclass. from Sexp.2 .
Existing experiments could immediately confirm the pe-
riodic patterns found in the numerical calculations and
fits. Accurate determination of c would require larger
statistics or a suitable use of the complete information
about the subsystems.

New directions should be pursued. Half-filling initial
states can also be obtained by a sudden expansion. The
presence of additional approximate conserved charges
makes the thermalization non-trivial and interesting [46–
49]. The possibility of revivals in the time-dependent
S2(t) for time scales of the order of 200 ms for J/U = 0.1,
a duration about 10 times longer than current experi-
ments [18], is under study. The techniques discussed here
for the bosonic case can also be applied to Fermi-Hubbard
systems [15], for which optical lattice experiments with
single-site resolution are rapidly becoming available [50–
53]. It would be desirable to develop specific procedures
to study models with other values of c (Ising, ZN clock,
Potts) or with O(3) symmetry with a chemical poten-
tial, which have a similar phase diagram [54], and could
be quantum simulated [55]. More insight on conformal
symmetry could be gained by studying particle number
fluctuations [56–58]. The entanglement entropy can also
be calculated in 3+1 dimensional pure gauge theories us-
ing standard Monte Carlo methods [59]. The rich finite
size scaling obtained here for O(2), a model often used to
describe the conformal transition [60], suggests to explore
multiflavor models [7, 8] with similar methods.
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[39] S. Östlund and S. Rommer, Phys. Rev. Lett. 75, 3537
(Nov 1995)

[40] Version 2.7.10, http://itensor.org/
[41] S. Trotzky, Y.-A. Chen, I. P. McCulloch, U. Schollwöck,
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